Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Kilcoyne is active.

Publication


Featured researches published by Michelle Kilcoyne.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

James W. Wilson; C. M. Ott; K. Höner zu Bentrup; Rajee Ramamurthy; L. Quick; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; D. Fernandez; Emily Richter; Miti Shah; Michelle Kilcoyne; Lokesh Joshi; Mayra Nelman-Gonzalez; S. Hing; Macarena Parra; P. Dumars; Kelly Norwood; R. Bober; J. Devich; A. Ruggles; Carla Goulart; Mark Rupert; Louis S. Stodieck; P. Stafford; L. Catella; Michael J. Schurr

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.


BMC Microbiology | 2014

Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium.

Muireann Egan; Mary O’Connell Motherway; Michelle Kilcoyne; Marian Kane; Lokesh Joshi; Marco Ventura; Douwe van Sinderen

BackgroundBifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010.ResultsB. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype.ConclusionThis study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.


Glycobiology | 2014

Cross-Platform Comparison of Glycan Microarray Formats

Linlin Wang; Richard D. Cummings; David F. Smith; Margaret E. Huflejt; Christopher T. Campbell; Jeffrey C. Gildersleeve; Jared Q. Gerlach; Michelle Kilcoyne; Lokesh Joshi; Sonia Serna; Niels Reichardt; Núria Parera Pera; Roland J. Pieters; William S. Eng; Lara K. Mahal

Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.


Analytical Chemistry | 2012

Construction of a Natural Mucin Microarray and Interrogation for Biologically Relevant Glyco-Epitopes

Lokesh Joshi; Michelle Kilcoyne; Jared Q. Gerlach; Marian Kane

Mucins are the principal components of mucus, and mucin glycosylation has important roles in defense, microbial adhesion, immunomodulation, inflammation, and cancer. Mucin expression and glycosylation are dynamic, responding to changes in local environment and disease. Potentially hundreds of heterogeneous glycans can substitute one mucin molecule, and it is difficult to identify biologically accessible glyco-epitopes. Thirty-seven mucins, from the reproductive and gastrointestinal (GI) tracts of six species (bovine, ovine, equine, porcine, chicken, and deer) and from two human-derived cell lines, were purified. Following optimization of mucin printing and construction of a novel mucin microarray, the glycoprofiles of the whole mucins on the microarray were compared using a panel of lectins and one antibody. Accessible glyco-motifs of GI mucins varied according to species and localization of mucin origin, with terminal fucose, the sialyl T-antigen, and N-linked oligosaccharides identified as potentially important. The occurrence of T- and sialyl T-antigen varied in bovine and ovine reproductive tract mucins, and terminal N-acetylgalactosamine (GalNAc) and sulfated carbohydrates were detected. This study introduces natural mucin microarrays as an effective tool for profiling mucin glyco-epitopes and highlights their potential for discovery of biologically important motifs in bacterial-host interactions and fertility.


BioMed Research International | 2015

Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics

Alan Kirwan; Marta Utratna; Michael E. O'Dwyer; Lokesh Joshi; Michelle Kilcoyne

Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.


Infection and Immunity | 2013

Divergent Mechanisms of Interaction of Helicobacter pylori and Campylobacter jejuni with Mucus and Mucins

Julie Naughton; Karina Mariño; Brendan Dolan; Colm J. Reid; Ronan Gough; Mary Gallagher; Michelle Kilcoyne; Jareth Q. Gerlach; Lokesh Joshi; Pauline M. Rudd; Stephen D. Carrington; Billy Bourke; Marguerite Clyne

ABSTRACT Helicobacter pylori and Campylobacter jejuni colonize the stomach and intestinal mucus, respectively. Using a combination of mucus-secreting cells, purified mucins, and a novel mucin microarray platform, we examined the interactions of these two organisms with mucus and mucins. H. pylori and C. jejuni bound to distinctly different mucins. C. jejuni displayed a striking tropism for chicken gastrointestinal mucins compared to mucins from other animals and preferentially bound mucins from specific avian intestinal sites (in order of descending preference: the large intestine, proximal small intestine, and cecum). H. pylori bound to a number of animal mucins, including porcine stomach mucin, but with less avidity than that of C. jejuni for chicken mucin. The strengths of interaction of various wild-type strains of H. pylori with different animal mucins were comparable, even though they did not all express the same adhesins. The production of mucus by HT29-MTX-E12 cells promoted higher levels of infection by C. jejuni and H. pylori than those for the non-mucus-producing parental cell lines. Both C. jejuni and H. pylori bound to HT29-MTX-E12 mucus, and while both organisms bound to glycosylated epitopes in the glycolipid fraction of the mucus, only C. jejuni bound to purified mucin. This study highlights the role of mucus in promoting bacterial infection and emphasizes the potential for even closely related bacteria to interact with mucus in different ways to establish successful infections.


Analytical Biochemistry | 2011

Periodic acid-Schiff's reagent assay for carbohydrates in a microtiter plate format.

Michelle Kilcoyne; Jared Q. Gerlach; Mark P. Farrell; Veer P. Bhavanandan; Lokesh Joshi

Microtiter plate colorimetric assays are widely used for analysis of carbohydrates and glycoconjugates. However, mucins are often not easily detected, as they have low neutral sugar content. We have adapted and optimised the periodic acid-Schiffs reagent (PAS) staining for microtiter plate assay by examining five factors: concentration and volume of periodic acid, oxidation time, volume of Schiffs reagent, and color development time. This assay requires just 25 μl of sample, utilises standardised Schiffs reagent, and has decreased assay time (140 min to completion). Seventeen monosaccharides (acidic, neutral, basic, phosphorylated, and deoxy) and four disaccharides were assessed. PAS-positive carbohydrates (amino, N-acetylamino, deoxy, and certain neutral monosaccharides, and sialic acids) responded linearly within a 10-100 nmol range approximately, which varied for each carbohydrate. The assay response for fetuin and porcine gastric mucin (PGM) was linear up to 150 μg (highest concentration tested), with no response from nonglycosylated protein. A lower response for asialofetuin was observed, but desialylated PGM preparations were similar or higher in response than their sialylated counterparts. The simplicity and low sample consumption of this method make it an excellent choice for screening or quantitation of chromatographic fractions containing carbohydrates and glycoconjugates, especially in the case of mucins.


Analytical Methods | 2014

Microarray evaluation of the effects of lectin and glycoprotein orientation and data filtering on glycoform discrimination

Jared Q. Gerlach; Michelle Kilcoyne; Lokesh Joshi

Affinity molecules offer promise in the development of inexpensive, high-throughput methods that are complementary to traditional carbohydrate analysis techniques such as chromatography and mass spectrometry. Lectins are carbohydrate binding proteins which have been effectively used in many applications, however, their broad and label-dependent specificities can make data interpretation with known structures difficult and their unambiguous use for analysis of unknowns impossible. To evaluate the usefulness of lectins in distinguishing closely related structural glycoforms of glycoproteins, the well-characterised glycoprotein bovine fetuin (Fet), along with three additional Fet glycoform populations produced by enzymatic and chemical means, were profiled using a microarray consisting of 43 lectins with affinities covering a variety of carbohydrate structures. Fully-sialylated and fully-desialylated forms of Fet, as well as two intermediate forms with partial sialylation and galactosylation, generated distinct profiles. Using stringent data filtering, the total number of printed lectins required to distinguish four heterogeneous Fet glycoform pools was reduced to just eight and also enabled stronger correlation between known Fet glycan structures and reported lectin specificities. A major application of a high-throughput lectin profiling approach would be monitoring glycosylation on biopharmaceutical proteins, but a potential complication may be the presence of interfering molecules in the solvent matrix. This possibility was evaluated with an expanded dataset including an additional five partially-inhibitory conditions and the samples could also be individually discriminated with seven lectins using this strategy. Based on known carbohydrate structures, several lectins gave unexpected responses in the lectin microarray format. Two of the Fet glycoforms were also printed in a microarray format and profiled by a panel of thirteen fluorescently-labeled lectins to evaluate the performance and specificity of binding in another orientation. Seven lectins differed in behaviour between platforms which demonstrated that lectin performance is also format-dependent. Together, these findings demonstrate the utility of lectin microarray profiling for selective identification of glycoprotein glycoforms even with interfering molecules present. Also highlighted is the use of stringent data filtering to more accurately correlate profile data to glycan structure, as well as the importance of evaluating lectin performance and structural correlation in the intended platform.


International Journal of Medical Microbiology | 2013

The MSHA pilus of Vibrio parahaemolyticus has lectin functionality and enables TTSS-mediated pathogenicity.

Nicky O’Boyle; Benoit Houeix; Michelle Kilcoyne; Lokesh Joshi; Aoife P. Boyd

Vibrio parahaemolyticus is a seafood-borne pathogen which causes acute inflammatory gastroenteritis--a process which is mediated by the translocation of type three secretion system effector proteins. The molecular interactions governing colonization of the intestinal epithelium by this pathogen remain poorly understood. The mannose-sensitive haemagglutinin (MSHA) pilus was identified in this study as a significant factor in bacterial-host cell adherence and subsequent pathogenesis towards Caco-2 human intestinal epithelial cells. Deletion of essential components of the MSHA pilus resulted in a 60% decrease in adherence and a similar reduction in bacterial uptake by human intestinal cells. The diminished adherence of MSHA mutants correlated with significant decreases in V. parahaemolyticus-induced Caco-2 cell lysis, cell rounding and IL-8 secretion. Glycan array comparison between the V. parahaemolyticus wild type and MSHA deficient mutants identified lectin functionality for the MSHA pilus with specificity towards the fucosylated blood group oligosaccharide antigens Lewis A and X and blood groups A and B. The MSHA pilus also exhibited high affinity for the structurally related asialo-GM1 ganglioside, lacto-N-fucopentaose I and lacto-N-difucohexaose I. We hypothesize that these glycans act as receptors for the MSHA pilus in the gastrointestinal tract, thereby facilitating efficient colonization of the intestinal epithelium by V. parahaemolyticus.


Cardiovascular and Hematological Agents in Medicinal Chemistry | 2007

Carbohydrates in Therapeutics

Michelle Kilcoyne; Lokesh Joshi

Awareness of the importance of carbohydrates in living systems and medicine is growing due to the increasing understanding of their biological and pharmacological relevance. Carbohydrates are ubiquitous and perform a wide array of biological roles. Carbohydrate-based or -modified therapeutics are used extensively in cardiovascular and hematological treatments ranging from inflammatory diseases and anti-thrombotic treatments to wound healing. Heparin is a well-known and widely used example of a carbohydrate-based drug but will not be discussed as it has been extensively reviewed. We will detail carbohydrate-based and -modified therapeutics, both those that are currently marketed or in various stages of clinical trials and those that are potential therapeutics based on promising preclinical investigations. Carbohydrate-based therapeutics include polysaccharide and oligosaccharide anti-inflammatory, anti-coagulant and anti-thrombotic agents from natural and synthetic sources, some as an alternative to heparin and others which were designed based on known structure-functional relationships. Some of these compounds have multiple biological effects, showing anti-adhesive, anti-HIV and anti-arthrithic activities. Small molecules, derivatives or mimetics of complement inhibitors, are detailed for use in limiting ischemia/ reperfusion injuries. Monosaccharides, both natural and synthetic, have been investigated for their in vivo anti-inflammatory and cardioprotective properties. Modification by glycosylation of natural products, or glycosylation-mimicking modification, has a significant effect on the parent molecule including increased plasma half-life and refining or increasing desired functions. It is hoped that this review will highlight the vast therapeutic potential of these natural bioactive molecules.

Collaboration


Dive into the Michelle Kilcoyne's collaboration.

Top Co-Authors

Avatar

Lokesh Joshi

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Jared Q. Gerlach

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Angela V. Savage

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Marian Kane

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhay Pandit

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuriy A. Knirel

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge