Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle L. Hernandez is active.

Publication


Featured researches published by Michelle L. Hernandez.


The Journal of Allergy and Clinical Immunology | 2009

The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in human subjects

Neil E. Alexis; Haibo Zhou; John C. Lay; Bradford Harris; Michelle L. Hernandez; Tsui Shan Lu; Philip A. Bromberg; David Diaz-Sanchez; Robert B. Devlin; Steven R. Kleeberger; David B. Peden

BACKGROUND The glutathione-S-transferase Mu 1 (GSTM1) null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone levels. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. However, it is not known whether GSTM1 modulates these ozone responses in vivo in human subjects. OBJECTIVE The purpose of this study was to determine whether the GSTM1 null genotype modulates ozone responses in human subjects. METHODS Thirty-five healthy volunteers were genotyped for the GSTM1 null mutation and underwent a standard ozone exposure protocol to determine whether lung function and inflammatory responses to ozone were different between the 19 GSTM1 wild type and 16 GSTM1 null volunteers. RESULTS GSTM1 did not modulate lung function responses to acute ozone. Granulocyte influx 4 hours after challenge was similar between GSTM1 normal and null volunteers. However, GSTM1 null volunteers had significantly increased airway neutrophils 24 hours after challenge, as well as increased expression of HLA-DR on airway macrophages and dendritic cells. CONCLUSION The GSTM1 null genotype is associated with increased airways inflammation 24 hours after ozone exposure, which is consistent with the lag time observed between increased ambient air ozone exposure and exacerbations of lung disease.


Innate Immunity | 2009

TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media.

Anke Leichtle; Michelle L. Hernandez; Kwang Pak; Kenshi Yamasaki; Chun-Fang Cheng; Nicholas J. G. Webster; Allen F. Ryan; Stephen I. Wasserman

Otitis media is the most prevalent childhood disease in developed countries. The involvement of Toll-like receptors (TLRs) in otitis media pathophysiology has been implicated by studies in cell lines and association studies of TLR gene polymorphisms. However, precise functions of TLRs in the etiology of otitis media in vivo have not been examined. We investigated the inflammatory response to nontypeable Haemophilus influenzae using a model of otitis media in wild-type, TLR2— /— and TLR4—/ — mice by gene microarray, qPCR, immunohistochemistry, Western blot analysis and histopathology. Toll-like receptor-2— /— and TLR4— /— mice exhibited a more profound, persistent inflammation with impaired bacterial clearance compared to controls. While wild-type mice induced tumor necrosis factor-a (TNF) after non-typeable H. influenzae challenge, TLR2—/— and TLR4—/— mice lack TNF induction in the early phase of otitis media. Moreover, lack of TLR2 resulted in a late increase in IL-10 expression and prolonged failure to clear bacteria. Toll-like receptor-4—/— mice showed impaired early bacterial clearance and loss of TLR2 induction in early otitis media. Our results demonstrate that both TLR2 and TLR4 signalling are critical to the regulation of infection in non-typeable H. influenzae-induced otitis media. Toll-like receptor-4 signalling appears to induce TLR2 expression, and TLR2 activation is critical for bacterial clearance and timely resolution of otitis media.


The Journal of Allergy and Clinical Immunology | 2010

Atopic asthmatic subjects but not atopic subjects without asthma have enhanced inflammatory response to ozone

Michelle L. Hernandez; John C. Lay; Bradford Harris; Charles R. Esther; W. June Brickey; Philip A. Bromberg; David Diaz-Sanchez; Robert B. Devlin; Steven R. Kleeberger; Neil E. Alexis; David B. Peden

BACKGROUND Asthma is a known risk factor for acute ozone-associated respiratory disease. Ozone causes an immediate decrease in lung function and increased airway inflammation. The role of atopy and asthma in modulation of ozone-induced inflammation has not been determined. OBJECTIVE We sought to determine whether atopic status modulates ozone response phenotypes in human subjects. METHODS Fifty volunteers (25 healthy volunteers, 14 atopic nonasthmatic subjects, and 11 atopic asthmatic subjects not requiring maintenance therapy) underwent a 0.4-ppm ozone exposure protocol. Ozone response was determined based on changes in lung function and induced sputum composition, including airway inflammatory cell concentration, cell-surface markers, and cytokine and hyaluronic acid concentrations. RESULTS All cohorts experienced similar decreases in lung function after ozone. Atopic and atopic asthmatic subjects had increased sputum neutrophil numbers and IL-8 levels after ozone exposure; values did not significantly change in healthy volunteers. After ozone exposure, atopic asthmatic subjects had significantly increased sputum IL-6 and IL-1beta levels and airway macrophage Toll-like receptor 4, Fc(epsilon)RI, and CD23 expression; values in healthy volunteers and atopic nonasthmatic subjects showed no significant change. Atopic asthmatic subjects had significantly decreased IL-10 levels at baseline compared with healthy volunteers; IL-10 levels did not significantly change in any group with ozone. All groups had similar levels of hyaluronic acid at baseline, with increased levels after ozone exposure in atopic and atopic asthmatic subjects. CONCLUSION Atopic asthmatic subjects have increased airway inflammatory responses to ozone. Increased Toll-like receptor 4 expression suggests a potential pathway through which ozone generates the inflammatory response in allergic asthmatic subjects but not in atopic subjects without asthma.


The Journal of Infectious Diseases | 2008

Myeloid Differentiation Primary Response Gene 88 Is Required for the Resolution of Otitis Media

Michelle L. Hernandez; Anke Leichtle; Kwang Pak; Joerg Ebmeyer; Sara Euteneuer; Marygorret Obonyo; Donald G. Guiney; Nicholas J. G. Webster; David H. Broide; Allen F. Ryan; Stephen I. Wasserman

BACKGROUND Signaling defects in the Toll-like receptor (TLR) pathway, such as interleukin-1 receptor-associated kinase 4 deficiency, highlight the prominence of TLR signaling in the defense against bacterial disease. Because myeloid differentiation primary response gene 88 (MyD88) can transduce signals from almost all TLRs, we studied its role in otitis media (OM), the most common upper respiratory tract bacterial infectious disease in young children. METHODS The middle ears (MEs) of wild-type (WT) and MyD88(-/-) mice were inoculated with nontypeable Haemophilus influenzae (NTHi). ME infection and inflammation were monitored for 21 days after surgery. Bone marrow-derived macrophages from WT and MyD88(-/-) mice were infected with NTHi in vitro to assess their interaction with bacteria. RESULTS In WT mice, MyD88 expression was detected in the ME stroma at baseline. MyD88(-/-) mice displayed prolonged ME mucosal thickening and delayed recruitment of neutrophils and macrophages. Although WT mice cleared NTHi within 5 days, viable NTHi were isolated for up to 21 days in MyD88(-/-) mice. The interaction between macrophages and NTHi was significantly altered in MyD88(-/-) mice. CONCLUSIONS In this mouse model, MyD88-mediated signaling was important for clearance of infection and resolution of inflammation in acute OM due to NTHi. The role played by innate signaling in children susceptible to chronic or recurrent OM deserves further study.


PLOS Pathogens | 2015

CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System.

Rebecca A. Drummond; Amanda L. Collar; Muthulekha Swamydas; Carlos A. Rodriguez; Jean K. Lim; Laura Mendez; Danielle L. Fink; Amy P. Hsu; Bing Zhai; Hatice Karauzum; Constantinos M. Mikelis; Stacey R. Rose; Elise M.N. Ferre; Lynne Yockey; Kimberly Lemberg; Hye Sun Kuehn; Sergio D. Rosenzweig; Xin Lin; Prashant Chittiboina; Sandip K. Datta; Thomas H. Belhorn; Eric T. Weimer; Michelle L. Hernandez; Tobias M. Hohl; Douglas B. Kuhns; Michail S. Lionakis

Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9 -/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9 -/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.


Current Opinion in Allergy and Clinical Immunology | 2012

The effect of environmental oxidative stress on airway inflammation.

Amy Auerbach; Michelle L. Hernandez

Purpose of reviewAsthma is an inflammatory respiratory condition with significantly associated morbidity and mortality that is increasing in prevalence. Air pollution is an important factor in both the development of asthma and in asthma exacerbations. Oxidative stress as a result of exposure to air pollution and underlying genetic polymorphisms that may play a role in susceptibility to this oxidative stress are the subject of current investigation. This article reviews the data regarding the effects of air pollution on the innate immune response and potential clinical and treatment implications of how genetic polymorphisms affect this response. Recent findingsRecent investigation reveals how pollutant-induced oxidative stress impacts airway inflammatory responses. Work by our study group demonstrates that asthmatic patients have an exaggerated inflammatory response to air pollution-induced oxidative stress. New trials investigating antioxidants as potential therapeutic interventions may target this specific issue. SummaryAir pollution plays a critical role in asthma and may affect certain patients more than others. Further investigation into the genetic polymorphisms that affect inflammatory responses may help target patient populations at greatest risk for air pollution-induced asthma and may provide new therapeutic options for these patient populations.


Inhalation Toxicology | 2010

Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge.

Michelle L. Hernandez; Bradford Harris; John C. Lay; Philip A. Bromberg; David Diaz-Sanchez; Robert B. Devlin; Steven R. Kleeberger; Neil E. Alexis; David B. Peden

Ozone and lipopolysaccharide (LPS) are environmental pollutants with adverse health effects noted in both healthy and asthmatic individuals. The authors and others have shown that inhalation of ozone and LPS both induce airway neutrophilia. Based on these similarities, the authors tested the hypothesis that common biological factors determine response to these two different agents. Fifteen healthy, nonasthmatic volunteers underwent a 0.4 part per million ozone exposure for 2 h while performing intermittent moderate exercise. These same subjects underwent an inhaled LPS challenge with 20,000 LPS units of Clinical Center Reference LPS, with a minimum of 1 month separating these two challenge sessions. Induced sputum was obtained 24 h before and 4–6 h after each exposure session. Sputum was assessed for total and differential cell counts and expression of cell surface proteins as measured by flow cytometry. Sputum supernatants were assayed for cytokine concentration. Both ozone and LPS challenge augmented sputum neutrophils and subjects’ responses were significantly correlated (R = .73) with each other. Ozone had greater overall influence on cell surface proteins by modifying both monocytes (CD14, human leukocyte antigen [HLA]-DR, CD11b) and macrophages (CD11b, HLA-DR) versus LPS where CD14 and HLA-DR were modified only on monocytes. However, LPS significantly increased interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, with no significant increases seen after ozone challenge. Ozone and LPS exposure in healthy volunteers induce similar neutrophil responses in the airways; however, downstream activation of innate immune responses differ, suggesting that oxidant versus bacterial air pollutants may be mediated by different mechanisms.


Inhalation Toxicology | 2010

Low-level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

Neil E. Alexis; John C. Lay; Milan J. Hazucha; Bradford Harris; Michelle L. Hernandez; Philip A. Bromberg; Howard Kehrl; David Diaz-Sanchez; Chong Kim; Robert B. Devlin; David B. Peden

The effects of low-level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known; however, much less is known about the inflammatory and immunomodulatory effects of low-level ozone in the airways. Techniques such as induced sputum and flow cytometry make it possible to examine airways inflammatory responses and changes in immune cell surface phenotypes following low-level ozone exposure. The purpose of this study was to determine if exposure to 0.08 parts per million ozone for 6.6 h induces inflammation and modifies immune cell surface phenotypes in the airways of healthy adult subjects. Fifteen normal volunteers underwent an established 0.08 part per million ozone exposure protocol to characterize the effect of ozone on airways inflammation and immune cell surface phenotypes. Induced sputum and flow cytometry were used to assess these endpoints 24 h before and 18 h after exposure. The results showed that exposure to 0.08 ppm ozone for 6.6 h induced increased airway neutrophils, monocytes, and dendritic cells and modified the expression of CD14, HLA-DR, CD80, and CD86 on monocytes 18 h following exposure. Exposure to 0.08 parts per million ozone is associated with increased airways inflammation and promotion of antigen-presenting cell phenotypes 18 hours following exposure. These findings need to be replicated in a similar experiment that includes a control air exposure.


Free Radical Biology and Medicine | 2013

Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers.

Michelle L. Hernandez; James G. Wagner; Aline Kala; Katherine Mills; Heather Wells; Neil E. Alexis; John C. Lay; Qing Jiang; Hongtao Zhang; Haibo Zhou; David B. Peden

Epidemiologic studies suggest that dietary vitamin E is an important candidate intervention for asthma. Our group has shown that daily consumption of vitamin E (γ-tocopherol, γT) has anti-inflammatory actions in both rodent and human phase I studies. The objective of this study was to test whether γT supplementation could mitigate a model of neutrophilic airway inflammation in rats and in healthy human volunteers. F344/N rats were randomized to oral gavage with γT versus placebo, followed by intranasal LPS (20μg) challenge. Bronchoalveolar lavage fluid and lung histology were used to assess airway neutrophil recruitment. In a phase IIa clinical study, 13 nonasthmatic subjects completed a double-blinded, placebo-controlled crossover study in which they consumed either a γT-enriched capsule or a sunflower oil placebo capsule. After 7 days of daily supplementation, they underwent an inhaled LPS challenge. Induced sputum was assessed for neutrophils 6 h after inhaled LPS. The effect of γT compared to placebo on airway neutrophils post-LPS was compared using a repeated-measures analysis of variance. In rats, oral γT supplementation significantly reduced tissue infiltration (p<0.05) and accumulation of airway neutrophils (p<0.05) that are elicited by intranasal LPS challenge compared to control rats. In human volunteers, γT treatment significantly decreased induced sputum neutrophils (p=0.03) compared to placebo. Oral supplementation with γT reduced airway neutrophil recruitment in both rat and human models of inhaled LPS challenge. These results suggest that γT is a potential therapeutic candidate for prevention or treatment of neutrophilic airway inflammation in diseased populations.


Innate Immunity | 2012

The role of DNA sensing and innate immune receptor TLR9 in otitis media

Anke Leichtle; Michelle L. Hernandez; Jasmine Lee; Kwang Pak; Nicholas J. G. Webster; Barbara Wollenberg; Stephen I. Wasserman; Allen F. Ryan

Otitis media (OM), a common infectious disease in children, is associated with bacterial middle ear (ME) infection. Toll-like receptors (TLRs) are important mediators of innate immune responses, and TLR9 specifically recognizes the unmethylated cytidine-phosphate-guanosine (CpG) motifs in bacterial DNA. Additional sensors of foreign DNA have recently been identified. The role of DNA sensing and TLR9 was investigated in a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi). Expression of genes related to DNA-sensing pathways involved in innate immunity was assessed via DNA microarray, qPCR and immunohistochemistry. Middle ear responses to NTHi were examined in wild-type and TLR9−/− mice by histopathology and bacterial culture. Expression of TLR9 signaling genes was modestly up-regulated during OM, as was TLR9 protein in both ME mucosal cells and infiltrating leukocytes. However, genes known to be regulated by CpG DNA were dramatically up-regulated, as were genes involved in DNA sensing by DIA, Pol-III and AIM2. Toll-like receptor 9 deletion significantly prolonged the inflammatory response induced by NTHi in the ME and delayed bacterial clearance. The results suggest that DNA sensing via TLR9 plays a role in OM pathogenesis and recovery. Alternative forms of DNA sensing may also contribute to OM.

Collaboration


Dive into the Michelle L. Hernandez's collaboration.

Top Co-Authors

Avatar

David B. Peden

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Haibo Zhou

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Neil E. Alexis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Allison J. Burbank

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Katherine Mills

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John C. Lay

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert B. Devlin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krista Todoric

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge