Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle L. Matter is active.

Publication


Featured researches published by Michelle L. Matter.


PLOS ONE | 2011

Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes.

Anna Leychenko; Eugene A. Konorev; Mayumi Jijiwa; Michelle L. Matter

Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15.

Hema Vaidyanathan; John Opoku-Ansah; Sandra Pastorino; Hema Renganathan; Michelle L. Matter; Joe W. Ramos

The ERK pathway responds to extracellular stimuli and oncogenes by modulating cellular processes, including transcription, adhesion, survival, and proliferation. ERK has diverse substrates that carry out these functions. The processes that are modulated are determined in part by the substrates that ERK phosphorylates. We demonstrate that PEA-15 (phosphoprotein enriched in astrocytes, 15 kDa) targets ERK to RSK2 and thereby enhances RSK2 activation. PEA-15 independently bound ERK and RSK2 and increased ERK association with RSK2 in a concentration-dependent manner. PEA-15 increased RSK2 activity and CREB-mediated transcription, and this process was regulated by phosphorylation of PEA-15. Finally, phorbol ester stimulation of PEA-15-null lymphocytes resulted in impaired RSK2 activation that was rescued by exogenous PEA-15 expression. Therefore, PEA-15 functions as a scaffold to enhance ERK activation of RSK2, and this activity is regulated by phosphorylation. Thus, PEA-15 can integrate signal transduction to provide a specific physiological outcome from activation of the multipotent ERK MAP kinase pathway.


PLOS ONE | 2010

R-Ras Regulates Migration through an Interaction with Filamin A in Melanoma Cells

Joanna E. Gawecka; Genevieve S. Griffiths; Barbro Ek-Rylander; Joe W. Ramos; Michelle L. Matter

Background Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. Methods and Findings We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. Conclusions These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.


Trends in Cardiovascular Medicine | 2008

Cardioprotective Signaling by Endothelin

Anita Schorlemmer; Michelle L. Matter; Ralph V. Shohet

The endothelin axis promotes vasoconstriction, suggesting that antagonists of endothelin signaling might be useful in treatment of heart failure. However, promising results from animal trials have not been recapitulated in heart failure patients. Here we review the role of major signaling pathways in the heart that are involved in cell survival initiated by ET-1. These pathways include mitogen-activated protein kinase, phosphatidyl inositol-1,4,5-triphosphate kinase (PI3K-AKT), nuclear factor-kappaB (NF-kappaB), and calcineurin signaling. A better understanding of endothelin-mediated signaling in cardiac cell survival may allow a reevaluation of endothelin receptor antagonists (ETRAs) in the treatment of heart failure.


Journal of Cellular Physiology | 2011

R-Ras interacts with filamin a to maintain endothelial barrier function

Genevieve S. Griffiths; M. Grundl; J.S. Allen; Michelle L. Matter

The molecular mechanisms regulating vascular barrier integrity remain incompletely elucidated. We have previously reported an association between the GTPase R‐Ras and repeat 3 of Filamin A (FLNa). Loss of FLNa has been linked to increased vascular permeability. We sought to determine whether FLNas association with R‐Ras affects endothelial barrier function. We report that in endothelial cells endogenous R‐Ras interacts with endogenous FLNa as determined by co‐immunoprecipitations and pulldowns with the FLNa‐GST fusion protein repeats 1–10. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In these cells FLNa and R‐Ras co‐localize at the plasma membrane. Knockdown of R‐Ras and/or FLNa by siRNA promotes vascular permeability, as determined by TransEndothelial Electrical Resistance and FITC‐dextran transwell assays. Re‐expression of FLNa restored endothelial barrier function in cells lacking FLNa whereas re‐expression of FLNaΔ3 did not. Immunostaining for VE‐Cadherin in cells with knocked down R‐Ras and FLNa demonstrated a disorganization of VE‐Cadherin at adherens junctions. Loss of R‐Ras and FLNa or blocking R‐Ras function via GGTI‐2133, a selective R‐Ras inhibitor, induced vascular permeability and increased phosphorylation of VE‐Cadherin (Y731) and Src (Y416). Expression of dominant negative R‐Ras promoted vascular permeability that was blocked by the Src inhibitor PP2. These findings demonstrate that maintaining endothelial barrier function is dependent upon active R‐Ras and association between R‐Ras and FLNa and that loss of this interaction promotes VE‐Cadherin phosphorylation and changes in downstream effectors that lead to endothelial leakiness. J. Cell. Physiol. 226: 2287–2296, 2011.


Journal of Biological Chemistry | 2012

RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration.

Joanna E. Gawecka; Shirley S. Young-Robbins; Florian J. Sulzmaier; Maisel J. Caliva; Minna M. Heikkilä; Michelle L. Matter; Joe W. Ramos

Background: RSK2 alters cell migration and metastasis, but the mechanism is incompletely understood. Results: RSK2 inactivates integrins, increases filamin binding to integrin tails, alters actin distribution, increases migration, and decreases fibronectin matrix assembly. Conclusion: RSK2 mediates inactivation of integrins and thus modulates integrin functions. Significance: These findings provide a novel mechanism by which RSK2 affects migration and may lead to more selective ways to inhibit RSK2-dependent metastasis. Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function. We report that RSK2 mediates Ras/Raf inactivation of integrins. As a result, we find that RSK2 impairs cell adhesion and integrin-mediated matrix assembly and promotes cell motility. Active RSK2 appears to affect integrins by reducing actin stress fibers and disrupting focal adhesions. Moreover, RSK2 co-localizes with the integrin activator talin and is present at integrin cytoplasmic tails. It is thereby in a position to modulate integrin activation and integrin-mediated migration. Activation of RSK2 promotes filamin phosphorylation and binding to integrins. We also find that RSK2 is activated in response to integrin ligation to fibronectin. Thus, RSK2 could participate in a feedback loop controlling integrin function. These results reveal RSK2 as a key regulator of integrin activity and provide a novel mechanism by which it may promote cell migration and cancer metastasis.


Journal of Biological Chemistry | 2011

Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway

Genevieve S. Griffiths; Melanie Grundl; Anna Leychenko; Silke Reiter; Shirley S. Young-Robbins; Florian J. Sulzmaier; Maisel J. Caliva; Joe W. Ramos; Michelle L. Matter

Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions.


Oncogene | 2012

PEA-15 potentiates H-Ras mediated epithelial cell transformation through Phospholipase D

Florian J. Sulzmaier; Mohana K. Gudur Valmiki; Deirdre A. Nelson; Maisel J. Caliva; Dirk Geerts; Michelle L. Matter; Eileen White; Joe W. Ramos

The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway. H-Ras is mutated in many human malignancies, and these mutations cause the protein to be constitutively active. Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras-mediated transformation. We found that PEA-15 does not block H-Ras-activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras-transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15s ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras-transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras-driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but also alternatively enhances tumorigenesis in the context of active Ras.


Journal of Nanobiotechnology | 2014

Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

Pavlos Anastasiadis; K. Mojica; John S. Allen; Michelle L. Matter

BackgroundImmuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment.ResultsLigand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone).ConclusionsEarly diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult. The combination of ultrasound and targeted UCAs can be used to enhance biofilm imaging and early detection. Our findings suggest that the combination of targeted UCAs and ultrasound is a novel molecular imaging technique for the detection of biofilms. We show that high-frequency acoustic microscopy provides sufficient spatial resolution for quantification of biofilm mechanoelastic properties.


Annals of clinical and translational neurology | 2014

Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness.

Hao Hu; Michelle L. Matter; Lina Issa-Jahns; Mayumi Jijiwa; Nadine Kraemer; Luciana Musante; Michelle de la Vega; Olaf Ninnemann; Detlev Schindler; Natalia Damatova; Katharina Eirich; Marco Sifringer; Sandra Schrötter; Lambert van den Heuvel; Chanel Casamina; Gisela Stoltenburg-Didinger; Hans-Hilger Ropers; Thomas F. Wienker; Christoph Hübner; Angela M. Kaindl

To identify the cause of a so‐far unreported phenotype of infantile‐onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD).

Collaboration


Dive into the Michelle L. Matter's collaboration.

Top Co-Authors

Avatar

Joe W. Ramos

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Allen

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mojica

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Anna Leychenko

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge