Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle M. Gehringer is active.

Publication


Featured researches published by Michelle M. Gehringer.


FEBS Letters | 2004

Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response

Michelle M. Gehringer

Microcystins, potent heptapeptide hepatotoxins produced by certain bloom‐forming cyanobacteria, are strong protein phosphatase inhibitors. They covalently bind the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A), thereby influencing regulation of cellular protein phosphorylation. The paralytic shellfish poison, okadaic acid, is also a potent inhibitor of these PPs. Inhibition of PP1 and PP2A has a dualistic effect on cells exposed to okadaic acid or microcystin‐LR, with both apoptosis and increased cellular proliferation being reported. This review summarises the existing data on the molecular effects of microcystin‐LR inhibition of PP1 and PP2A both in vivo and in vitro, and where possible, compares this to the action of okadaic acid.


Applied and Environmental Microbiology | 2005

Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: Implications for harmful algal blooms

Alan E. Wilson; Orlando Sarnelle; Brett A. Neilan; Tim P. Salmon; Michelle M. Gehringer; Mark E. Hay

ABSTRACT To measure genetic variation within and among populations of the bloom-forming cyanobacterium Microcystis aeruginosa, we surveyed a suite of lakes in the southern peninsula of Michigan that vary in productivity (total phosphorus concentrations of ∼10 to 100 μg liter−1). Survival of M. aeruginosa isolates from lakes was relatively low (i.e., mean of 7% and maximum of 30%) and positively related to lake total phosphorus concentration (P = 0.014, r2 = 0.407, n = 14). In another study (D. F. Raikow, O. Sarnelle, A. E. Wilson, and S. K. Hamilton, Limnol. Oceanogr. 49:482-487, 2004), survival rates of M. aeruginosa isolates collected from an oligotrophic lake (total phosphorus of ∼10 μg liter−1 and dissolved inorganic nitrogen:total phosphorus ratio of 12.75) differed among five different medium types (G test, P of <0.001), with higher survival (P = 0.003) in low-nutrient media (28 to 37% survival) than in high-nutrient media. Even with the relatively low isolate survivorship that could select against detecting the full range of genetic variation, populations of M. aeruginosa were genetically diverse within and among lakes (by analysis of molecular variance, Φsc = 0.412 [Φsc is an F-statistic derivative which evaluates the correlation of haplotypic diversity within populations relative to the haplotypic diversity among all sampled populations], P = 0.001), with most clones being distantly related to clones collected from lakes directly attached to Lake Michigan (a Laurentian Great Lake) and culture collection strains collected from Canada, Scotland, and South Africa. Ninety-one percent of the 53 genetically unique M. aeruginosa clones contained the microcystin toxin gene (mcyA). Genotypes with the toxin gene were found in all lakes, while four lakes harbored both genotypes possessing and genotypes lacking the toxin gene.


Toxicon | 2003

The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR

Michelle M. Gehringer; Vijayne Kewada; Nadya Coates; Tim G. Downing

Toxin-producing cyanobacteria pose a worldwide health threat to humans and animals due to their increasing presence in both drinking and recreational waters. Detection of microcystins in water generally relies on specialised equipment and a delay of several days for transport and analysis. Little work has, however, been done on establishing a simple, cost-effective and sensitive plant bioassay for the detection of microcystin-LR (MCLR) in water at the WHO Tolerable Daily Intake guideline level of 1 microg/l. We investigated the effect of a MCLR extract at 1 and 10 microg/l on the growth of Lepidium sativum over 6 days. Exposure to 10 microg/l MCLR resulted in a significant decrease in root and leaf lengths and fresh weights of seedlings when compared to the controls. These results were consistent with seedlings exposed to pure MCLR at 10 microg/l. Seedlings exposed to 1 microg/l MCLR showed a significant decrease in root development from day 2 to day 6. Glutathione S-transferase and glutathione peroxidase activities were also significantly raised in plants from days 5 and 4, respectively, at both toxin levels investigated.


International Journal of Environmental Research and Public Health | 2011

Does α-Amino-β-methylaminopropionic Acid (BMAA) Play a Role in Neurodegeneration?

Alexander S. Chiu; Michelle M. Gehringer; Jeffrey H. Welch; Brett A. Neilan

The association of α-amino-β-methylaminopropionic acid (BMAA) with elevated incidence of amyotrophic lateral sclerosis/Parkinson’s disease complex (ALS/PDC) was first identified on the island of Guam. BMAA has been shown to be produced across the cyanobacterial order and its detection has been reported in a variety of aquatic and terrestrial environments worldwide, suggesting that it is ubiquitous. Various in vivo studies on rats, mice, chicks and monkeys have shown that it can cause neurodegenerative symptoms such as ataxia and convulsions. Zebrafish research has also shown disruption to neural development after BMAA exposure. In vitro studies on mice, rats and leeches have shown that BMAA acts predominantly on motor neurons. Observed increases in the generation of reactive oxygen species (ROS) and Ca2+ influx, coupled with disruption to mitochondrial activity and general neuronal death, indicate that the main mode of activity is via excitotoxic mechanisms. The current review pertaining to the neurotoxicity of BMAA clearly demonstrates its ability to adversely affect neural tissues, and implicates it as a potentially significant compound in the aetiology of neurodegenerative disease. When considering the potential adverse health effects upon exposure to this compound, further research to better understand the modes of toxicity of BMAA and the environmental exposure limits is essential.


Toxicon | 2012

Excitotoxic potential of the cyanotoxin β-methyl-amino-L-alanine (BMAA) in primary human neurons.

Alexander S. Chiu; Michelle M. Gehringer; Nady Braidy; Gilles J. Guillemin; Jeffrey H. Welch; Brett A. Neilan

The toxicity of the cyanobacterial modified amino acid, BMAA, has been described in rat, mouse and leech neurons. Particular emphasis has been placed on the potential ability of BMAA to induce neuronal damage via excitotoxic mechanisms. Here we present data indicating that the effects observed on lower organisms are also evident in a human model. Our data indicates that BMAA induces increased intracellular Ca²⁺ influx, DNA damage, mitochondrial activity, lactate dehydrogenase (LDH) release and generation of reactive oxygen species (ROS). The amelioration of LDH release in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801 indicates that the neurotoxic effects of BMAA are mediated via NMDA receptor activation. Additionally, we have shown that BMAA induces the expression of neuronal nitric oxide synthase (nNOS) and caspase-3 indicating that it can stimulate apoptosis in human neurons, presumably via activation of NMDA receptors.


Toxicon | 2011

A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria

Jamal Al-Tebrineh; Michelle M. Gehringer; R. Akcaalan; Brett A. Neilan

Toxin-producing cyanobacteria are a worldwide threat to both human and animal health. The hepatotoxins microcystin and nodularin are the most commonly occurring toxins produced by bloom-forming cyanobacteria. They are cyclic peptides that are synthesized nonribosomally by a multienzyme complexes encoded within the microcystin (mcyS) and nodularin (ndaS) synthetase gene clusters. Early detection of potentially toxic blooms would allow for pre-emptive action to reduce consumer exposure to cyanotoxins. We have developed a quantitative PCR (qPCR) assay based on SYBR-green chemistry for the detection of potentially hepatotoxic cyanobacteria spanning all known microcystin and nodularin producing taxa using primers specifically targeting mcyE and ndaF. The qPCR assay was validated against previously analyzed cyanobacterial bloom samples. Whole cell qPCR using cultured M. aeruginosa PCC7806 and non-toxic M. aeruginosa UTEX2386 had a sensitivity of 1000 cells ml⁻¹. In summary, we have developed a robust and sensitive molecular method for the detection and quantification of hepatotoxigenic cyanobacteria in bloom samples. This technology offers several advantages over traditional and contemporary testing protocols currently used to assess water quality.


Journal of Microbiological Methods | 2011

How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection

Verlaine J. Timms; Michelle M. Gehringer; Hazel M. Mitchell; George Daskalopoulos; Brett A. Neilan

Mycobacteria have thwarted detection by scientists for centuries. Mycobacterium paratuberculosis is one of the most fastidious of the Mycobacteriaceae, and has been implicated in both animal and human diseases. In domestic livestock, M. paratuberculosis has been associated with Johnes disease, which given its increasing incidence, is currently a cause for concern, due to the potential for M. paratuberculosis to enter our food chain. In addition, a tenuous link has been reported between M. paratuberculosis and Crohns disease, however evidence to support this link is hampered by the lack of accurate methodologies for detection of M. paratuberculosis in humans. This review compares the sensitivity and specificity of traditional and more recent techniques to the culture and molecular detection of M. paratuberculosis. While serology and culture are popular choices for the livestock industry they have not produced useful data for human infection. Although the advent of molecular biology has enabled faster diagnosis of M. paratuberculosis in human infection, there is currently no gold standard such as culture on which to validate these findings. Even with DNA/RNA detection methods, there is the ever present issue of the genetic relatedness of M. paratuberculosis to other mycobacteria of the Mycobacterium avium complex, some of which also infect humans with very different pathological outcomes. Recent developments in this field include more rapid methods of M. paratuberculosis culture as well as the development of more accurate and sensitive PCR assays. The application of these techniques should offer a greater insight as to the role of M. paratuberculosis in human gastrointestinal diseases.


Toxicon | 2003

An investigation into the effect of selenium supplementation on microcystin hepatotoxicity.

Michelle M. Gehringer; Kerry S Downs; Timothy G. Downing; Ryno J. Naudé; Enid Shephard

Toxin-producing cyanobacteria pose a worldwide health threat to humans and animals due to their increasing presence in both drinking and recreational waters. Little work has, however, been done on a preventative therapy for anyone at risk of exposure to cyanobacterial toxins. The potential benefits of dietary supplementation of selenium, an antioxidant, to protect against the mouse liver injury induced by the toxin, microcystin-LR, has been investigated. BALB/c mice were pretreated for two weeks with sodium selenite (1.5 microg/mouse/day) before an intraperitoneal injection of microcystin-LR. Selenium-supplementation was found to provide some protection to the action of the toxin. In addition selenium pretreatment reduced the liver damage caused by lethal and sub-lethal toxin doses as reflected in liver pathology, decreased serum ALT and lipid peroxidation levels as well as prevention of glycogen loss compared to non-selenium supplemented toxin treated mice. The increased level of liver glutathione peroxidase activity following selenium-supplementation may indicate the possible route of selenium protection in the mice.


The ISME Journal | 2012

Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

Michelle M. Gehringer; Lewis Adler; Alexandra A. Roberts; Michelle C. Moffitt; Troco Kaan Mihali; Toby Mills; Claus Fieker; Brett A. Neilan

The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. ‘Macrozamia riedlei 65.1’ and Nostoc sp. ‘Macrozamia serpentina 73.1’ both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg−1 chlorophyll a in Nostoc sp. ‘Macrozamia riedlei 65.1’ and 12.5±8.4 ng μg−1 Chl a in Nostoc sp. ‘Macrozamia serpentina 73.1’ extracts. Further scans indicated the presence of the rare isoform [L-Har2] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml−1 (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har2] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har2] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.


Scientific Reports | 2013

Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA).

Alexander S. Chiu; Michelle M. Gehringer; Nady Braidy; Gilles J. Guillemin; Jeffrey H. Welch; Brett A. Neilan

The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction.

Collaboration


Dive into the Michelle M. Gehringer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim G. Downing

University of Port Elizabeth

View shared research outputs
Top Co-Authors

Avatar

Alexander S. Chiu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jeffrey H. Welch

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nady Braidy

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Timothy G. Downing

University of Port Elizabeth

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge