Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle M. Monasky is active.

Publication


Featured researches published by Michelle M. Monasky.


Circulation Research | 2012

Ranolazine Improves Cardiac Diastolic Dysfunction Through Modulation of Myofilament Calcium Sensitivity

Joshua D. Lovelock; Michelle M. Monasky; Euy Myoung Jeong; Harvey A. Lardin; Hong Liu; Bindiya Patel; Domenico M. Taglieri; Lianzhi Gu; Praveen Kumar; Narayan Pokhrel; Dewan Zeng; Luiz Belardinelli; Dan Sorescu; R. John Solaro; Samuel C. Dudley

Rationale: Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (INa), reducing the net cytosolic Ca2+ efflux. Objective: Oxidative stress in the DOCA-salt model may increase late INa, resulting in diastolic dysfunction amenable to treatment with ranolazine. Methods and Results: Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E′:sham, 31.9±2.8, sham+ranolazine, 30.2±1.9, DOCA-salt, 41.8±2.6, and DOCA-salt+ranolazine, 31.9±2.6; P=0.018). The end-diastolic pressure-volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham, 0.16±0.01 versus sham+ranolazine, 0.18±0.01 versus DOCA-salt, 0.23±0.2 versus DOCA-salt+ranolazine, 0.17±0.0 1 mm Hg/L; P<0.005). DOCA-salt myocytes demonstrated impaired relaxation, &tgr;, improving with ranolazine (DOCA-salt, 0.18±0.02, DOCA-salt+ranolazine, 0.13±0.01, sham, 0.11±0.01, sham+ranolazine, 0.09±0.02 seconds; P=0.0004). Neither late INa nor the Ca2+ transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca2+ with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca2+ response and cross-bridge kinetics. Conclusions: Diastolic dysfunction could be reversed by ranolazine, probably resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus.


American Journal of Physiology-heart and Circulatory Physiology | 2013

The β-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium

Michelle M. Monasky; Domenico M. Taglieri; Marcus Henze; Chad M. Warren; Megan S. Utter; David G. Soergel; Jonathan D. Violin; R. John Solaro

In the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates β-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023. Compared with saline controls, ANG II induced a significant increase in pCa50 and maximum Ca(2+)-activated myofilament tension but reduced the Hill coefficient (nH). TRV120023 increased maximum tension and pCa50, although to lesser extent than ANG II. In contrast to ANG II, TRV120023 increased nH. Losartan blocked the effects of ANG II on pCa50 and nH and reduced maximum tension below that of saline controls. ANG II + TRV120023 showed responses similar to those of TRV120023 alone; compared with ANG II + losartan, ANG II + TRV120023 preserved maximum tension and increased both pCa50 and cooperativity. Tropomyosin phosphorylation was lower in myofilaments from saline-treated hearts compared with the other groups. Phosphorylation of cardiac troponin I was significantly reduced in ANG II + TRV120023 and TRV120023 groups versus saline controls, and myosin-binding protein C phosphorylation at Ser(282) was unaffected by ANG II or losartan but significantly reduced with TRV120023 treatment compared with all other groups. Our data indicate that TRV120023-related promotion of β-arrestin signaling and enhanced contractility involves a mechanism promoting the myofilament response to Ca(2+) via altered protein phosphorylation. Selective activation of β-arrestin-dependent pathways may provide advantages over conventional AT1R blockers.


Journal of Molecular and Cellular Cardiology | 2013

Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myofilament properties

Euy Myoung Jeong; Michelle M. Monasky; Lianzhi Gu; Domenico M. Taglieri; Bindiya Patel; Hong Liu; Qiongying Wang; Ian Greener; Samuel C. Dudley; R. John Solaro

Despite the increasing prevalence of heart failure with preserved left ventricular function, there are no specific treatments, partially because the mechanism of impaired relaxation is incompletely understood. Evidence indicates that cardiac relaxation may depend on nitric oxide (NO), generated by NO synthase (NOS) requiring the co-factor tetrahydrobiopterin (BH(4)). Recently, we reported that hypertension-induced diastolic dysfunction was accompanied by cardiac BH(4) depletion, NOS uncoupling, a depression in myofilament cross-bridge kinetics, and S-glutathionylation of myosin binding protein C (MyBP-C). We hypothesized that the mechanism by which BH(4) ameliorates diastolic dysfunction is by preventing glutathionylation of MyBP-C and thus reversing changes of myofilament properties that occur during diastolic dysfunction. We used the deoxycorticosterone acetate (DOCA)-salt mouse model, which demonstrates mild hypertension, myocardial oxidative stress, and diastolic dysfunction. Mice were divided into two groups that received control diet and two groups that received BH(4) supplement for 7days after developing diastolic dysfunction at post-operative day 11. Mice were assessed by echocardiography. Left ventricular papillary detergent-extracted fiber bundles were isolated for simultaneous determination of force and ATPase activity. Sarcomeric protein glutathionylation was assessed by immunoblotting. DOCA-salt mice exhibited diastolic dysfunction that was reversed after BH(4) treatment. Diastolic sarcomere length (DOCA-salt 1.70±0.01 vs. DOCA-salt+BH(4) 1.77±0.01μm, P<0.001) and relengthening (relaxation constant, τ, DOCA-salt 0.28±0.02 vs. DOCA-salt+BH(4) 0.08±0.01, P<0.001) were also restored to control by BH(4) treatment. pCa(50) for tension increased in DOCA-salt compared to sham but reverted to sham levels after BH(4) treatment. Maximum ATPase rate and tension cost (ΔATPase/ΔTension) decreased in DOCA-salt compared to sham, but increased after BH(4) treatment. Cardiac MyBP-C glutathionylation increased in DOCA-salt compared to sham, but decreased with BH(4) treatment. MyBP-C glutathionylation correlated with the presence of diastolic dysfunction. Our results suggest that by depressing S-glutathionylation of MyBP-C, BH(4) ameliorates diastolic dysfunction by reversing a decrease in cross-bridge turnover kinetics. These data provide evidence for modulation of cardiac relaxation by post-translational modification of myofilament proteins.


Journal of Molecular and Cellular Cardiology | 2011

Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A.

Domenico M. Taglieri; Michelle M. Monasky; Ivana Knezevic; Katherine A. Sheehan; Ming Lei; Xin Wang; Jonathan Chernoff; Beata M. Wolska; Yunbo Ke; R. John Solaro

Earlier investigations in our lab indicated an anti-adrenergic effect induced by activation of p21-activated kinase (Pak-1) and protein phosphatase 2A (PP2A). Our objective was to test the hypothesis that Pak-1/PP2A is a signaling cascade controlling stress-induced cardiac growth. We determined the effects of ablation of the Pak-1 gene on the response of the myocardium to chronic stress of isoproterenol (ISO) administration. Wild-type (WT) and Pak-1-knockout (Pak-1-KO) mice were randomized into six groups to receive either ISO, saline (CTRL), or ISO and FR180204, a selective inhibitor of Erk1/2. Echocardiography revealed that hearts of the Pak-1-KO/ISO group had increased LV fractional shortening, reduced LV chamber volume in diastole and systole, increased cardiac hypertrophy, and enhanced transmitral early filling deceleration time, compared to all other groups. The changes were associated with an increase in relative Erk1/2 activation in Pak-1-KO/ISO mice versus all other groups. ISO-induced cardiac hypertrophy and Erk1/2 activation in Pak-1-KO/ISO were attenuated when the selective Erk1/2 inhibitor FR180204 was administered. Immunoprecipitation showed an association between Pak-1, PP2A, and Erk1/2. Cardiac myocytes infected with an adenoviral vector expressing constitutively active Pak-1 showed a repression of Erk1/2 activation. p38 MAPK phosphorylation was decreased in Pak-1-KO/ISO and Pak-1-KO/CTRL mice compared to WT. Levels of phosphorylated PP2A were increased in ISO-treated Pak-1-KO mice, indicating reduced phosphatase activity. Maximum Ca(2+)-activated tension in detergent-extracted bundles of papillary fibers from ISO-treated Pak-1-KO mice was higher than in all other groups. Analysis of cTnI phosphorylation indicated that compared to WT, ISO-induced phosphorylation of cTnI was blunted in Pak-1-KO mice. Active Pak-1 is a natural inhibitor of Erk1/2 and a novel anti-hypertrophic signaling molecule upstream of PP2A.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Effects of dietary omega–3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies

George E. Billman; Yoshinori Nishijima; Andriy E. Belevych; Dmitry Terentyev; Ying Xu; Kaylan M. Haizlip; Michelle M. Monasky; Nitisha Hiranandani; William S. Harris; Sandor Gyorke; Cynthia A. Carnes; Paul M. L. Janssen

Since omega-3 polyunsaturated fatty acids (n-3 PUFAs) can alter ventricular myocyte calcium handling, these fatty acids could adversely affect cardiac contractile function, particularly following myocardial infarction. Therefore, 4 wk after myocardial infarction, dogs were randomly assigned to either placebo (corn oil, 1 g/day, n = 16) or n-3 PUFAs supplement [docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) ethyl esters; 1, 2, or 4 g/day; n = 7, 8, and 12, respectively] groups. In vivo, ventricular function was evaluated by echocardiography before and after 3 mo of treatment. At the end of the 3-mo period, hearts were removed and in vitro function was evaluated using right ventricular trabeculae and isolated left ventricular myocytes. The treatment elicited significant (P < 0.0001) dose-dependent increases (16.4-fold increase with 4 g/day) in left ventricular tissue and red blood cell n-3 PUFA levels (EPA + DHA, placebo, 0.42 +/- 0.04; 1 g/day, 3.02 +/- 0.23; 2 g/day, 3.63 +/- 0.17; and 4 g/day, 6.97 +/- 0.33%). Regardless of the dose, n-3 PUFA treatment did not alter ventricular function in the intact animal (e.g., 4 g/day, fractional shortening: pre, 42.9 +/- 1.6 vs. post, 40.1 +/- 1.7%; placebo: pre, 39.2 +/- 1.3 vs. post, 38.4 +/- 1.6%). The developed force per cross-sectional area, changes in length- and frequency-dependent behavior in contractile force, and the inotropic response to beta-adrenoceptor activation were also similar for trabeculae obtained from placebo- or n-3 PUFA-treated dogs. Finally, calcium currents and calcium transients were the same in myocytes from n-3 PUFA- and placebo-treated dogs. Thus dietary n-3 PUFAs did not adversely alter either in vitro or in vivo ventricular contractile function in dogs with healed infarctions.


Journal of Molecular and Cellular Cardiology | 2014

The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy

Domenico M. Taglieri; Keven R. Johnson; Brian T. Burmeister; Michelle M. Monasky; Matthew J. Spindler; Jaime DeSantiago; Kathrin Banach; Bruce R. Conklin; Graeme K. Carnegie

The objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy. Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAP-Lbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload. Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC. AKAP-Lbc-ΔPKD mice display attenuated compensatory cardiac hypertrophy, increased collagen deposition and apoptosis, compared to wild-type (WT) control littermates. Mechanistically, reduced levels of PKD1 activation are observed in AKAP-Lbc-ΔPKD mice compared to WT mice, resulting in diminished phosphorylation of histone deacetylase 5 (HDAC5) and decreased hypertrophic gene expression. This is consistent with a reduced compensatory hypertrophy phenotype leading to progression of heart failure in AKAP-Lbc-ΔPKD mice. Overall, our data demonstrates a critical in vivo role for AKAP-Lbc-PKD1 signaling in the development of compensatory hypertrophy to enhance cardiac performance in response to TAC-induced pressure overload and neurohumoral stimulation by AT-II/PE treatment.


Journal of Biological Chemistry | 2013

Conserved Asp-137 Is Important for both Structure and Regulatory Functions of Cardiac α-Tropomyosin (α-TM) in a Novel Transgenic Mouse Model Expressing α-TM-D137L

Sumeyye Yar; Shamim A. K. Chowdhury; rd Robert T. Davis; Minae Kobayashi; Michelle M. Monasky; Sudarsan Rajan; Beata M. Wolska; Vadim Gaponenko; Tomoyoshi Kobayashi; David F. Wieczorek; R. John Solaro

Background: Conserved Asp-137 destabilizes the hydrophobic core of the coiled-coil tropomyosin. Results: Leu substitution of Asp-137 decreases flexibility of tropomyosin and causes long range structural rearrangements; mouse hearts expressing this variant show altered function. Conclusion: Residue Asp-137 is important for regulatory function of tropomyosin in the heart. Significance: Our data support the hypothesis that tropomyosin flexibility regulates cardiac function in vivo. α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca2+ sensitivity and cardiomyocyte contractility without changes in intracellular Ca2+ transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.


American Journal of Physiology-heart and Circulatory Physiology | 2012

p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation

Michelle M. Monasky; Domenico M. Taglieri; Bindiya Patel; Jonathan Chernoff; Beata M. Wolska; Yunbo Ke; R. John Solaro

p21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca(2+) sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult. In the present study, we subjected ex vivo hearts from wild-type (WT) and Pak1-knockout (KO) mice to 20 min of global cardiac ischemia followed by 30 min of reperfusion. In the absence of Pak1, there was an exacerbation of the increased end-diastolic pressure and reduced left ventricular developed pressure occurring after I/R injury. ProQ analysis revealed an increase in troponin-T phosphorylation at baseline in Pak1-KO hearts compared with WT. Significantly decreased myosin light chain 2 (MLC2) phosphorylation in Pak1-KO hearts compared with WT after I/R injury was confirmed by Western immunoblotting. These data indicate that Pak1-KO hearts have reduced recovery of myocardial performance after global I/R injury concomitant with changes in troponin-T and MLC2 phosphorylation. Finally, a protein-protein association between Pak1 and MLC2, and Pak1 and troponin-T, was determined by coimmunoprecipitation. Thus, results of our study provide a basis for targeting a novel pathway, including Pak1, in the therapies for patients with ischemic events.


Cellular Signalling | 2014

P21-activated kinase in inflammatory and cardiovascular disease.

Domenico M. Taglieri; Masuko Ushio-Fukai; Michelle M. Monasky

P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target.


Frontiers in Physiology | 2013

Cholesterol regulation of PIP2: why cell type is so important

Domenico M. Taglieri; Dawn A. Delfín; Michelle M. Monasky

A commentary on How cholesterol regulates endothelial biomechanics by Hong, Z., Staiculescu, M. C., Hampel, P., Levitan, I., and Forgacs, G. (2012). Front. Physio. 3:426. doi: 10.3389/fphys.2012.00426 Phosphatidylinositol 4,5-bisphosphate (PIP2) is a phospholipid found in cell membranes, and has been indicated to play important roles in cytoskeletal organization, cell motility, transduction of extracellular signals, regulation of ion channels at the plasma membrane, endocytosis, phagocytosis, and endosome function. It has also been linked to cancer in humans (Di Paolo and De Camilli, 2006). PIP2 can be hydrolyzed by membrane-bound phospholipase C beta into two second messengers, IP3 and diacylglycerol (DAG). Plasmalemmal cholesterol has been demonstrated to regulate PIP2 hydrolysis and thus its cellular function in skin fibroblasts and pancreatic β-cells (Kwik et al., 2003; Hao and Bogan, 2009). In this original research article, Hong et al. (2012) address the role of plasmalemmal cholesterol in regulating the localization and metabolism of PIP2 in endothelial cells and the result on cell stiffness. They suggest that a decrease in cholesterol leads to disruption of PIP2 hydrolysis, which in turn results in increased cross-links between the membrane and cytoskeleton via PIP2 and increased cell stiffness. These results are important for understanding certain diseases, such as atherosclerosis, in which cholesterol levels are central to the pathology. The mechanism by which cholesterol regulates PIP2 in the plasma membrane may not be the same for different cell types. Cholesterol depletion in fibroblasts leads to decreased levels of PIP2 in the plasma membrane, diminished membrane-cytoskeletal attachments, and decreased lateral motility (Kwik et al., 2003). Similarly, in cultured pancreatic β-cells, cholesterol depletion stimulates the hydrolysis of PIP2, thus reducing the amount of PIP2 at the plasma membrane (Hao and Bogan, 2009). These findings are in contrast to a study using HEK293 cells, in which membrane cholesterol enrichment promoted PIP2 depletion (Chun et al., 2010). Cholesterol depletion in lymphoblasts results in decreased lateral mobility of membrane proteins (Kwik et al., 2003). PIP2 lateral mobility has been described as low in atrial myocytes, and high in HEK293 cells and fibroblasts (Epand, 2008). Therefore, cholesterol may regulate PIP2 differently in various cell types. Compartmentalization and regulation of PIP2 metabolism within the plasma membrane may contribute to differences observed between cell types (Epand, 2008; Kwiatkowska, 2010). Cholesterol-rich membrane microdomains (lipid rafts), which are known to be intimately involved in regulating a variety of G-protein coupled receptor-mediated functions, including those regulating PIP2 metabolism (Allen et al., 2007), have bidirectional relationship with actin cytoskeleton. In response to external stimuli, Gαq/11 subunits stimulate membrane-bound phospholipase C beta, which then cleaves PIP2 into its two second messengers. Therefore, it is believed that the relationship among lipid raft-associated PIP2, G-proteins, and actin has strong implications in regulating actin assembly to modify cell shape and function. Conversely, actin associates with rafts and caveolae either as polymerized structures or as actin monomers, which might help to organize lipid raft domains and the molecules that are present in this structure to evoke a variety of cell signaling pathways in the cell interior (Caroni, 2001). Another exciting mechanism involves three proteins, namely GAP43, MARCKS, and CAP23, which accumulate at rafts, where they associate with PIP2, and promote its retention and clustering. By modulating PIP2 at plasmalemmal rafts, GAP43, MARCKS, and CAP23 regulate cell cortex actin dynamics through a common mechanism. It is believed that, in response to local signals, these proteins dissociate from PIP2, creating local pools of free PIP2, which result in diverse intracellular responses. Nonetheless, the mechanisms through which PIP2 effector molecules mediate the various cellular responses to localized liberation of PIP2 are mostly unknown. Investigations in this direction will foster our understanding of cholesterol-mediated PIP2 intracellular functions.

Collaboration


Dive into the Michelle M. Monasky's collaboration.

Top Co-Authors

Avatar

Domenico M. Taglieri

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

R. John Solaro

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Bindiya Patel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunbo Ke

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Carlo Pappone

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Beata M. Wolska

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Ciconte

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge