Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Murphy is active.

Publication


Featured researches published by Michelle Murphy.


The Journal of Experimental Biology | 2007

Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice.

Elzbieta Krol; Michelle Murphy; John R. Speakman

SUMMARY The maximum rate of sustained energy intake (SusEI) may limit reproductive effort and other aspects of animal performance. We have previously suggested that lactating mice are not limited centrally by the alimentary tract or peripherally by the mammary glands, but that the limits to SusEI are imposed by the capacity of the animal to dissipate body heat generated as a by-product of processing food and producing milk. To explore the nature of the limits to SusEI, we bred MF1 laboratory mice at 21°C and then dorsally shaved lactating females to reduce their external insulation and thereby elevate their capacity to dissipate body heat. These mice increased their food intake by 12.0% and assimilated on average 30.9 kJ day–1 more energy than unshaved animals. With nearly identical mean litter sizes (11.4 pups for shaved and 11.3 pups for unshaved mice), shaved mothers exported 15.2% (22.0 kJ day–1) more energy as milk than control individuals. The elevated milk production of shaved mice enabled them to wean litters that were 15.4% (12.2 g) heavier than offspring produced by unshaved mice. Our results argue against central, peripheral or extrinsic limits to SusEI at peak lactation and provide strong support for the heat dissipation limit hypothesis. More generally, we see many situations where heat dissipation may be a previously unrecognised factor constraining the evolution of endothermic animals – for example, the latitudinal and altitudinal trends in clutch and litter sizes and the migration patterns of birds.


Endocrinology | 2012

Effects of Manipulating Hypothalamic Triiodothyronine Concentrations on Seasonal Body Weight and Torpor Cycles in Siberian Hamsters

Michelle Murphy; Preeti H. Jethwa; Amy Warner; Perry Barrett; Kanishka N. Nilaweera; John M. Brameld; Francis J. P. Ebling

Siberian hamsters display photoperiodically regulated annual cycles in body weight, appetite, and reproduction. Previous studies have revealed a profound up-regulation of type 3 deiodinase (DIO3) mRNA in the ventral ependyma of the hypothalamus associated with hypophagia and weight loss in short-day photoperiods. DIO3 reduces the local availability of T(3), so the aim of this study was to test the hypothesis that decreased hypothalamic T(3) availability underlies the short-day-induced catabolic state. The experimental approach was to determine whether a local increase in T(3) in the hypothalamus of hamsters exposed to short days could reverse the behavioral and physiological changes induced by this photoperiod. In study 1, microimplants releasing T(3) were placed bilaterally into the hypothalamus. This treatment rapidly induced a long-day phenotype including increased appetite and body weight within 3 wk of treatment and increased fat mass and testis size by the end of the 10-wk study period. In study 2, hypothalamic T(3) implants were placed into hamsters carrying abdominal radiotelemetry implants. Again body weight increased significantly, and the occurrence of winter torpor bouts was dramatically decreased to less than one bout per week, whereas sham-implanted hamsters entered torpor up to six times a week. Our findings demonstrate that increased central T(3) induces a long-day metabolic phenotype, but in neither study was the molt cycle affected, so we infer that we had not disrupted the initial detection of photoperiod. We conclude that hypothalamic thyroid hormone availability plays a key role in seasonal regulation of appetite, body weight, and torpor.


Journal of Neuroendocrinology | 2013

Increased Responses to the Actions of Fibroblast Growth Factor 21 on Energy Balance and Body Weight in a Seasonal Model of Adiposity

Michelle Murphy; Ricardo J. Samms; Amy Warner; Matei Bolborea; Perry Barrett; Maxine J Fowler; John M. Brameld; Kostas Tsintzas; Alexei Kharitonenkov; Andrew C. Adams; Tamer Coskun; Francis J. P. Ebling

The present study aimed to investigate the actions of fibroblast growth factor 21 (FGF21) on energy balance in a natural model of relative fatness, the Siberian hamster. Hamsters were studied under long days (LD) to promote weight gain, or short days to induce weight loss, and treated with rhFGF21 (3 mg/kg/day) via s.c. minipumps for 14 days. On days 7–9, detailed assessments of ingestive behaviour, metabolic gas exchange and locomotor activity were made. FGF21 caused substantial (P < 0.0001) weight loss in the fat LD state but not in the lean SD state: at the end of the study, FGF21‐treated hamsters in LD lost 18% of body weight compared to vehicle controls, which is comparable to the natural body weight loss observed in SD. Epididymal fat pads, a correlate of total carcass fat content, were reduced by 19% in FGF21 treated hamsters in LD, whereas no difference was found in SD. Body weight loss in LD was associated with a reduction in food intake (P < 0.001) and a decreased respiratory exchange ratio (P < 0.001), indicating increased fat oxidation. Treatment with FGF21 maintained the normal nocturnal increase in oxygen consumption and carbon dioxide production into the early light phase in hamsters in LD, indicating increased energy expenditure, although locomotor activity was unaffected. These data suggest a greater efficacy of FGF21 in hamsters in LD compared to those in SD, which is consistent with both the peripheral and possibly central actions of FGF21 with respect to promoting a lean phenotype. The observed differences in FGF21 sensitivity may relate to day length‐induced changes in adipose tissue mass.


Journal of Thyroid Research | 2011

The role of hypothalamic tri-iodothyronine availability in seasonal regulation of energy balance and body weight.

Michelle Murphy; Francis J. P. Ebling

Seasonal cycles of body weight provide a natural model system to understand the central control of energy balance. Studies of such cycles in Siberian hamsters suggest that a change in the hypothalamic availability of thyroid hormone is the key determinant of annual weight regulation. Uptake of thyroid hormone into the hypothalamus from the peripheral circulation occurs largely through a specific monocarboxylate transporter expressed by tanycyte cells lining the third ventricle. Tanycytes are the principal brain cell type expressing type II and type III deiodinases, so they control the local concentrations of T4, T3, and inactive metabolites. Type III deiodinase mRNA in tanycytes is photoperiodically upregulated in short photoperiod. This would be expected to reduce the availability of T3 in the hypothalamus by promoting the production of inactive metabolites such as rT3. Experimental microimplantation of T3 directly into the hypothalamus during short-days promotes a long-day phenotype by increasing food intake and body weight without affecting the peripheral thyroid axis. Thus, thyroid hormone exerts anabolic actions within the brain that play a key role in the seasonal regulation of body weight. Understanding the precise actions of thyroid hormone in the brain may identify novel targets for long-term pharmacological manipulation of body weight.


Appetite | 2014

Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice.

T. Bake; Michelle Murphy; D. G. A. Morgan; Julian G. Mercer

Highlights • Rapid adaptation of feeding behaviour to scheduled palatable diet access• No evidence of reduced feeding (hypophagia) prior to scheduled palatable meals• Mice exhibit food anticipatory activity (FAA) prior to scheduled palatable meals• Continuing presence of FAA when scheduled palatable mealsare withdrawn• Immediate hyperphagic response once the palatable meals are restored after 7 days


Journal of Neuroendocrinology | 2010

Short-Days Induce Weight Loss in Siberian Hamsters Despite Overexpression of the Agouti-Related Peptide Gene

Preeti H. Jethwa; Amy Warner; Maxine J Fowler; Michelle Murphy; M W A de Backer; Roger A.H. Adan; Perry Barrett; John M. Brameld; Francis J. P. Ebling

Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis‐ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up‐regulate a major orexigenic peptide, agouti‐related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short‐day induced winter catabolic state. Infusions of a recombinant adeno‐associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long‐day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP‐immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21‐week duration of the study. In conclusion, the over‐expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism.


International Journal of Endocrinology | 2013

Diet-Regulated Anxiety

Michelle Murphy; Julian G. Mercer

A substantial proportion of noncommunicable disease originates in habitual overconsumption of calories, which can lead to weight gain and obesity and attendant comorbidities. At the other end of the spectrum, the consequences of undernutrition in early life and at different stages of adult life can also have major impact on wellbeing and quality of life. To help address some of these issues, greater understanding is required of interactions with food and contemporary diets throughout the life course and at a number of different levels: physiological, metabolic, psychological, and emotional. Here we review the current literature on the effects of dietary manipulation on anxiety-like behaviour. This evidence, assembled from study of preclinical models of diet challenge from gestation to adult life, supports a role for diet in the important connections between psychology, physiology, and behaviour. Analogous processes in the human population in our current obesogenic environment are likely to contribute to individual and societal challenges in this area.


Journal of Endocrinology | 2015

Dual effects of fibroblast growth factor 21 on hepatic energy metabolism

Ricardo J. Samms; Michelle Murphy; Maxine J Fowler; Scott Cooper; Paul J. Emmerson; Tamer Coskun; Andrew C. Adams; Alexei Kharitonenkov; Francis J. P. Ebling; Kostas Tsintzas

The aim of this study was to investigate the mechanisms by which fibroblast growth factor 21 (FGF21) affects hepatic integration of carbohydrate and fat metabolism in Siberian hamsters, a natural model of adiposity. Twelve aged matched adult male Siberian hamsters maintained in their long-day fat state since birth were randomly assigned to one of two treatment groups and were continuously infused with either vehicle (saline; n=6) or recombinant human FGF21 protein (1 mg/kg per day; n=6) for 14 days. FGF21 administration caused a 40% suppression (P<0.05) of hepatic pyruvate dehydrogenase complex (PDC), the rate-limiting step in glucose oxidation, a 34% decrease (P<0.05) in hepatic acetylcarnitine accumulation, an index of reduced PDC flux, a 35% increase (P<0.05) in long-chain acylcarnitine content (an index of flux through β-oxidation) and a 47% reduction (P<0.05) in hepatic lipid content. These effects were underpinned by increased protein abundance of PD kinase-4 (PDK4, a negative regulator of PDC), the phosphorylated (inhibited) form of acetyl-CoA carboxylase (ACC, a negative regulator of delivery of fatty acids into the mitochondria) and the transcriptional co-regulators of energy metabolism peroxisome proliferator activated receptor gamma co-activator alpha (PGC1α) and sirtuin-1. These findings provide novel mechanistic basis to support the notion that FGF21 exerts profound metabolic benefits in the liver by modulating nutrient flux through both carbohydrate (mediated by a PDK4-mediated suppression of PDC activity) and fat (mediated by deactivation of ACC) metabolism, and therefore may be an attractive target for protection from increased hepatic lipid content and insulin resistance that frequently accompany obesity and diabetes.


Behavioural Pharmacology | 2009

The role of histamine 3 receptors in the control of food intake in a seasonal model of obesity: the Siberian hamster.

Preeti H. Jethwa; Perry Barrett; Yvonne Turnbull; Rachel A. Enright; Amy Warner; Michelle Murphy; Francis J. P. Ebling

Siberian hamsters develop hypophagia and increase catabolism of fat reserves in response to short photoperiods resulting in a natural loss of body weight in winter. We previously found that histamine 3 receptor (H3R) mRNA in the posterior hypothalamus is significantly decreased in short photoperiods. We hypothesized that this lower expression of H3R might contribute to the winter hypophagic state, therefore we examined the effects of the H3R agonist imetit and inverse agonists clobenpropit and thioperamide on food intake. We expressed the Siberian hamster H3R receptor in vitro and confirmed that imetit, clobenpropit and thioperamide are bound specifically, thus validating them as tools to investigate the role of H3R in vivo. Intracerebroventricular administration of histamine decreased food intake in hamsters in the fat summer state. Administration of imetit to hamsters in the lean state increased food intake, whereas administration of inverse agonists decreased food intake, though this was associated with decreased locomotor activity. Both H3R inverse agonists prevented the nocturnal rise in body temperature indicating additional effects on energy expenditure. In summary, our results suggest that increased availability of central histamine or the reduction of H3R activity decrease food intake. These effects are similar to those observed in hamsters in short photoperiods.


Neuroscience Letters | 2014

Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

Scott Jones; E.L. Fileccia; Michelle Murphy; Maxine J Fowler; Madeleine V. King; Sinead E. Shortall; Peter Wigmore; Ar Green; Kevin C.F. Fone; Francis J. P. Ebling

Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster.

Collaboration


Dive into the Michelle Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Warner

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge