Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Oppenheimer is active.

Publication


Featured researches published by Michelle Oppenheimer.


Archives of Biochemistry and Biophysics | 2010

Characterization of recombinant UDP-galactopyranose mutase from Aspergillus fumigatus.

Michelle Oppenheimer; Myles B. Poulin; Todd L. Lowary; Richard F. Helm; Pablo Sobrado

UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose, which is an important cell wall component in Aspergillus fumigatus and other pathogenic microbes. A. fumigatus UGM (AfUGM) was expressed in Escherichia coli and purified to homogeneity. The enzyme was shown to function as a homotetramer by size-exclusion chromatography and to contain approximately 50% of the flavin in the active reduced form. A k(cat) value of 72 +/- 4 s(-1) and a K(M) value of 110 +/- 15 microM were determined with UDP-galactofuranose as substrate. In the oxidized state, AfUGM does not bind UDP-galactopyranose, while UDP and UDP-glucose bind with K(d) values of 33 +/- 9 microM and 90 +/- 30 microM, respectively. Functional and structural differences between the bacterial and eukaryotic UGMs are discussed.


Enzyme Research | 2011

Biosynthesis of Galactofuranose in Kinetoplastids: Novel Therapeutic Targets for Treating Leishmaniasis and Chagas' Disease

Michelle Oppenheimer; Ana L. Valenciano; Pablo Sobrado

Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during infection. β-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of Leishmania spp. and Trypanosoma cruzi. β-Galf-containing glycans have been shown to be important in parasite-cell interaction and protection against oxidative stress. Here, we discuss the role of β-Galf in pathogenesis and recent studies on the Galf-biosynthetic enzymes: UDP-galactose 4′ epimerase (GalE), UDP-galactopyranose mutase (UGM), and UDP-galactofuranosyl transferase (GalfT). The central role in Galf formation, its unique chemical mechanism, and the absence of a homologous enzyme in humans identify UGM as the most attractive drug target in the β-Galf-biosynthetic pathway in protozoan parasites.


Journal of Biological Chemistry | 2012

Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

Richa Dhatwalia; Harkewal Singh; Michelle Oppenheimer; Dale B. Karr; Jay C. Nix; Pablo Sobrado; John J. Tanner

Background: UDP-galactopyranose mutase (UGM) catalyzes a step in galactofuranose biosynthesis in pathogens and is a promising drug design target. Results: The first crystal structures and SAXS analysis of UGM from the pathogenic fungus Aspergillus fumigatus are reported. Conclusion: The unique quaternary structure enables profound conformational changes to occur upon substrate binding. The structures support the covalent mechanism. Significance: The structures should aid inhibitor design. UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 Å to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.


Biochimica et Biophysica Acta | 2012

Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.

Elvira Romero; Michael Fedkenheuer; Samuel W. Chocklett; Jun Qi; Michelle Oppenheimer; Pablo Sobrado

Aspergillus fumigatus siderophore A (Af SidA) is a flavin-dependent monooxygenase that catalyzes the hydroxylation of ornithine, producing N(5)-hydroxyornithine. This is the first step in the biosynthesis of hydroxamate-containing siderophores in A. fumigatus. Af SidA is essential for virulence, validating this enzyme as a drug target. Af SidA can accept reducing equivalents from either NADPH or NADH and displays similar kinetic parameters when using either coenzyme. When the enzyme is reduced with NADPH and reacted with molecular oxygen, a C4a-hydroperoxyflavin intermediate is observed. When the enzyme is reduced with NADH, the intermediate is 2-fold less stable. Steady-state kinetic isotope effect values of 3 and 2 were determined for NADPH and NADH, respectively. The difference in the isotope effect values is due to differences in the rate of flavin reduction by these coenzymes. A difference in the binding mode between these coenzymes was observed by monitoring flavin fluorescence. Limited proteolysis studies show that NADP(+), and not NAD(+), protects Af SidA from proteolysis, suggesting that it induces conformational changes upon binding. Together, these results are consistent with NADPH having a role in flavin reduction and in the modulation of conformational changes, which positions NADP(+) to also play a role in stabilization of the C4a-hydroperoxyflavin.


Biochemistry | 2012

Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation.

Richa Dhatwalia; Harkewal Singh; Michelle Oppenheimer; Pablo Sobrado; John J. Tanner

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.


Journal of the American Chemical Society | 2012

Identification of the NAD(P)H Binding Site of Eukaryotic UDP-Galactopyranose Mutase

Richa Dhatwalia; Harkewal Singh; Luis M. Solano; Michelle Oppenheimer; Reeder Robinson; Jacob Ellerbrock; Pablo Sobrado; John J. Tanner

UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery.


Biochemical and Biophysical Research Communications | 2011

Isolation and characterization of functional Leishmania major virulence factor UDP-galactopyranose mutase

Michelle Oppenheimer; Ana L. Valenciano; Pablo Sobrado

Human parasitic pathogens of the genus Leishmania are the causative agents of cutaneous, mucocutaneous, and visceral leishmaniasis. Currently, there are millions of people infected with these diseases and over 50,000 deaths occur annually. Recently, it was shown that the flavin-dependent enzyme UDP-galactopyranose mutase (UGM) is a virulence factor in Leishmania major. UGM catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose. The product, UDP-galactofuranose, is the only source of galactofuranose which is present on the cell surface of this parasite and has been implicated to be important for host-parasite interactions. The recombinant form of this enzyme was obtained in a soluble and active form. The enzyme was shown to be active only in the reduced state. A k(cat) value of 5 ± 0.2s(-1) and a K(M) value of 87 ± 11 μM were determined with UDP-galactofuranose as the substrate. Different from the dimeric bacterial and tetrameric fungal UGMs, this parasitic enzyme functions as a monomer.


Archives of Biochemistry and Biophysics | 2010

Recombinant expression, purification, and characterization of ThmD, the oxidoreductase component of tetrahydrofuran monooxygenase

Michelle Oppenheimer; Brad S. Pierce; Joshua A. Crawford; Keith W. Ray; Richard F. Helm; Pablo Sobrado

Tetrahydrofuran monooxygenase (Thm) catalyzes the NADH-and oxygen-dependent hydroxylation of tetrahydrofuran to 2-hydroxytetrahydrofuran. Thm is composed of a hydroxylase enzyme, a regulatory subunit, and an oxidoreductase named ThmD. ThmD was expressed in Escherichia coli as a fusion to maltose-binding protein (MBP) and isolated to homogeneity after removal of the MBP. Purified ThmD contains covalently bound FAD, [2Fe-2S] center, and was shown to use ferricyanide, cytochrome c, 2,6-dichloroindophenol, and to a lesser extent, oxygen as surrogate electron acceptors. ThmD displays 160-fold preference for NADH over NADPH and functions as a monomer. The flavin-binding domain of ThmD (ThmD-FD) was purified and characterized. ThmD-FD displayed similar activity as the full-length ThmD and showed a unique flavin spectrum with a major peak at 463nm and a small peak at 396 nm. Computational modeling and mutagenesis analyses suggest a novel three-dimensional fold or covalent flavin attachment in ThmD.


Enzyme Research | 2011

Fluorescence Polarization Binding Assay for Aspergillus fumigatus Virulence Factor UDP-Galactopyranose Mutase

Jun Qi; Michelle Oppenheimer; Pablo Sobrado

Aspergillus fumigatus is an opportunistic human pathogenic fungus responsible for deadly lung infections in immunocompromised individuals. Galactofuranose (Galf) residues are essential components of the cell wall and play an important role in A. fumigatus virulence. The flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose to UDP-galactofuranose, the biosynthetic precursor of Galf. Thus, inhibitors of UGM that block the biosynthesis of Galf can lead to novel chemotherapeutics for treating A. fumigatus-related diseases. Here, we describe the synthesis of fluorescently labeled UDP analogs and the development of a fluorescence polarization (FP) binding assay for A. fumigatus UGM (AfUGM). High-affinity binding to AfUGM was only obtained with the chromophore TAMRA, linked to UDP by either 2 or 6 carbons with Kd values of 2.6 ± 0.2 μM and 3.0 ± 0.7 μM, respectively. These values were ~6 times lower than when UDP was linked to fluorescein. The FP assay was validated against several known ligands and displayed an excellent Z′ factor (0.79 ± 0.02) and good tolerance to dimethyl sulfoxide.


PLOS ONE | 2012

Chemical Mechanism of UDP-Galactopyranose Mutase from Trypanosoma cruzi: A Potential Drug Target against Chagas' Disease

Michelle Oppenheimer; Ana L. Valenciano; Karina Kizjakina; Jun Qi; Pablo Sobrado

Collaboration


Dive into the Michelle Oppenheimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad S. Pierce

University of Texas at Arlington

View shared research outputs
Researchain Logo
Decentralizing Knowledge