Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle P. Winn is active.

Publication


Featured researches published by Michelle P. Winn.


Annals of Neurology | 2003

Parkin mutations and susceptibility alleles in late-onset Parkinson's disease

Sofia A. Oliveira; William K. Scott; Eden R. Martin; Martha Nance; Ray L. Watts; Jean Hubble; William C. Koller; Rajesh Pahwa; Matthew B. Stern; Bradley C. Hiner; William G. Ondo; Fred H. Allen; Burton L. Scott; Christopher G. Goetz; Gary W. Small; F.L. Mastaglia; Jeffrey M. Stajich; Fengyu Zhang; Michael W. Booze; Michelle P. Winn; Lefkos T. Middleton; Jonathan L. Haines; Margaret A. Pericak-Vance; Jeffery M. Vance

Parkin, an E2‐dependent ubiquitin protein ligase, carries pathogenic mutations in patients with autosomal recessive juvenile parkinsonism, but its role in the late‐onset form of Parkinsons disease (PD) is not firmly established. Previously, we detected linkage of idiopathic PD to the region on chromosome 6 containing the Parkin gene (D6S305, logarithm of odds score, 5.47) in families with at least one subject with age at onset (AAO) younger than 40 years. Mutation analysis of the Parkin gene in the 174 multiplex families from the genomic screen and 133 additional PD families identified mutations in 18% of early‐onset and 2% of late‐onset families (5% of total families screened). The AAO of patients with Parkin mutations ranged from 12 to 71 years. Excluding exon 7 mutations, the mean AAO of patients with Parkin mutations was 31.5 years. However, mutations in exon 7, the first RING finger (Cys253Trp, Arg256Cys, Arg275Trp, and Asp280Asn) were observed primarily in heterozygous PD patients with a much later AAO (mean AAO, 49.2 years) but were not found in controls in this study or several previous reports (920 chromosomes). These findings suggest that mutations in Parkin contribute to the common form of PD and that heterozygous mutations, especially those lying in exon 7, act as susceptibility alleles for late‐onset form of Parkinson disease. Ann Neurol 2003


Circulation Research | 2009

TRPC1 Channels Are Critical for Hypertrophic Signaling in the Heart

Malini Seth; Zhu Shan Zhang; Lan Mao; Victoria Graham; Jarrett Burch; Jonathan A. Stiber; Leonidas Tsiokas; Michelle P. Winn; Joel Abramowitz; Howard A. Rockman; Lutz Birnbaumer; Paul B. Rosenberg

Rationale: Cardiac muscle adapts to increase workload by altering cardiomyocyte size and function resulting in cardiac hypertrophy. G protein–coupled receptor signaling is known to govern the hypertrophic response through the regulation of ion channel activity and downstream signaling in failing cardiomyocytes. Objective: Transient receptor potential canonical (TRPC) channels are G protein–coupled receptor operated channels previously implicated in cardiac hypertrophy. Our objective of this study is to better understand how TRPC channels influence cardiomyocyte calcium signaling. Methods and Results: Here, we used whole cell patch clamp of adult cardiomyocytes to show upregulation of a nonselective cation current reminiscent of TRPC channels subjected to pressure overload. This TRPC current corresponds to the increased TRPC channel expression noted in hearts of mice subjected to pressure overload. Importantly, we show that mice lacking TRPC1 channels are missing this putative TRPC current. Moreover, Trpc1−/− mice fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to hemodynamic stress and neurohormonal excess. In addition, we provide a mechanistic basis for the protection conferred to Trpc1−/− mice as mechanosensitive signaling through calcineurin/NFAT, mTOR and Akt is altered in Trpc1−/− mice. Conclusions: From these studies, we suggest that TRPC1 channels are critical for the adaptation to biomechanical stress and TRPC dysregulation leads to maladaptive cardiac hypertrophy and failure.


Journal of Clinical Investigation | 2011

Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis

Shreeram Akilesh; Hani Suleiman; Haiyang Yu; M. Christine Stander; Peter Lavin; Rasheed Gbadegesin; Corinne Antignac; Martin R. Pollak; Jeffrey B. Kopp; Michelle P. Winn; Andrey S. Shaw

The specialized epithelial cell of the kidney, the podocyte, has a complex actin-based cytoskeleton. Dynamic regulation of this cytoskeleton is required for efficient barrier function of the kidney. Podocytes are a useful cell type to study the control of the actin cytoskeleton in vivo, because disruption of components of the cytoskeleton results in podocyte damage, cell loss, and a prototypic injury response called focal segmental glomerulosclerosis (FSGS). Searching for actin regulatory proteins that are expressed in podocytes, we identified a RhoA-activated Rac1 GTPase-activating protein (Rac1-GAP), Arhgap24, that was upregulated in podocytes as they differentiated, both in vitro and in vivo. Increased levels of active Rac1 and Cdc42 were measured in Arhgap24 knockdown experiments, which influenced podocyte cell shape and membrane dynamics. Consistent with a role for Arhgap24 in normal podocyte functioning in vivo, sequencing of the ARHGAP24 gene in patients with FSGS identified a mutation that impaired its Rac1-GAP activity and was associated with disease in a family with FSGS. Thus, Arhgap24 contributes to the careful balancing of RhoA and Rac1 signaling in podocytes, the disruption of which may lead to kidney disease.


Journal of The American Society of Nephrology | 2011

TRPC6 enhances angiotensin II-induced albuminuria.

Jason Eckel; Peter Lavin; Elizabeth A. Finch; Nirvan Mukerji; Jarrett Burch; Rasheed Gbadegesin; Brandy L. Bowling; Alison Byrd; Gentzon Hall; Matthew A. Sparks; Zhu Shan Zhang; Alison Homstad; Laura Barisoni; Lutz Birbaumer; Paul B. Rosenberg; Michelle P. Winn

Mutations in the canonical transient receptor potential cation channel 6 (TRPC6) are responsible for familial forms of adult onset focal segmental glomerulosclerosis (FSGS). The mechanisms by which TRPC6 mutations cause kidney disease are not well understood. We used TRPC6-deficient mice to examine the function of TRPC6 in the kidney. We found that adult TRPC6-deficient mice had BP and albumin excretion rates similar to wild-type animals. Glomerular histomorphology revealed no abnormalities on both light and electron microscopy. To determine whether the absence of TRPC6 would alter susceptibility to hypertension and renal injury, we infused mice with angiotensin II continuously for 28 days. Although both groups developed similar levels of hypertension, TRPC6-deficient mice had significantly less albuminuria, especially during the early phase of the infusion; this suggested that TRPC6 adversely influences the glomerular filter. We used whole-cell patch-clamp recording to measure cell-membrane currents in primary cultures of podocytes from both wild-type and TRPC6-deficient mice. In podocytes from wild-type mice, angiotensin II and a direct activator of TRPC6 both augmented cell-membrane currents; TRPC6 deficiency abrogated these increases in current magnitude. Our findings suggest that TRPC6 promotes albuminuria, perhaps by promoting angiotensin II-dependent increases in Ca(2+), suggesting that TRPC6 blockade may be therapeutically beneficial in proteinuric kidney disease.


Journal of The American Society of Nephrology | 2012

A Hybrid CFHR3-1 Gene Causes Familial C3 Glomerulopathy

Talat H. Malik; Peter Lavin; Elena Goicoechea de Jorge; Katherine A. Vernon; Kirsten L. Rose; Mitali P. Patel; Marcel de Leeuw; John J. Neary; Peter J. Conlon; Michelle P. Winn; Matthew C. Pickering

Controlled activation of the complement system, a key component of innate immunity, enables destruction of pathogens with minimal damage to host tissue. Complement factor H (CFH), which inhibits complement activation, and five CFH-related proteins (CFHR1-5) compose a family of structurally related molecules. Combined deletion of CFHR3 and CFHR1 is common and confers a protective effect in IgA nephropathy. Here, we report an autosomal dominant complement-mediated GN associated with abnormal increases in copy number across the CFHR3 and CFHR1 loci. In addition to normal copies of these genes, affected individuals carry a unique hybrid CFHR3-1 gene. In addition to identifying an association between these genetic observations and complement-mediated kidney disease, these results provide insight into the protective role of the combined deletion of CFHR3 and CFHR1 in IgA nephropathy.


Kidney International | 2014

Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis.

Andrew F. Malone; Paul J. Phelan; Gentzon Hall; Umran Cetincelik; Alison Homstad; Andrea S. Alonso; Thomas Lindsey; Matthew A. Sparks; Stephen R. Smith; Nicholas J. A. Webb; Philip A. Kalra; Adebowale Adeyemo; Andrey S. Shaw; Peter J. Conlon; J. Charles Jennette; David N. Howell; Michelle P. Winn; Rasheed Gbadegesin

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes including inherited genetic defects with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome, thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane findings. Secondary FSGS is known to develop in classic Alport Syndrome at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical findings at diagnosis were proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin glomerular basement membrane, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.


Pediatric Nephrology | 2011

Pathogenesis and therapy of focal segmental glomerulosclerosis: an update

Rasheed Gbadegesin; Peter Lavin; John Foreman; Michelle P. Winn

Focal and segmental glomerulosclerosis (FSGS) is an important cause of steroid-resistant nephrotic syndrome in adults and children. It is responsible for 5–20% of all cases of end-stage kidney disease (ESKD) in the United States. The pathogenesis of FSGS has not been fully elucidated; however, data from molecular studies of familial cases in the last two decades suggest that FSGS is a defect of the podocyte. The therapeutic agents available for treatment of FSGS are not very effective and only a small percentage of affected individuals will achieve complete remission. Recent data from molecular biology and molecular genetics has provided insight into the mechanisms of action of old agents and also identification of other novel therapeutic targets. This review focuses on recent advances in the molecular pathogenesis of FSGS and currently available therapeutic agents as well as potential novel therapies.


Journal of The American Society of Nephrology | 2014

Mutations in the Gene That Encodes the F-Actin Binding Protein Anillin Cause FSGS

Rasheed Gbadegesin; Gentzon Hall; Adebowale Adeyemo; Nils Hanke; Irini Tossidou; James L. Burchette; Alison Homstad; Matthew A. Sparks; Jose A. Gomez; Andrea S. Alonso; Peter Lavin; Peter J. Conlon; Ron Korstanje; M. Christine Stander; Ghaidan Shamsan; Moumita Barua; Robert F. Spurney; Pravin C. Singhal; Jeffrey B. Kopp; Hermann Haller; David N. Howell; Martin R. Pollak; Andrey S. Shaw; Mario Schiffer; Michelle P. Winn

FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.


Cellular and Molecular Life Sciences | 2006

Focal and segmental glomerulosclerosis

Nikki Daskalakis; Michelle P. Winn

Abstract.An increasing cause of end-stage renal disease is the pathological lesion focal and segmental glomerulosclerosis (FSGS). FSGS is characterized by proteinuria and frequently nephrotic syndrome with ensuing renal failure. The etiology remains unknown in the majority of individuals. The idiopathic form of FSGS is most common; however, secondary forms of FSGS do exist. There is a form of FSGS that is fulminant that frequently recurs after renal transplantation with an estimated frequency of approximately 30%, suggesting that the pathogenesis is not solely a result of intrinsic kidney disease. Recently, hereditary forms of the disease were recognized as well as those associated with other congenital syndromes. Known genetic causes of the hereditary form of this disease have been suggested to account for upwards of 18% of cases. This review will address recent discoveries of the genetic mechanisms of hereditary FSGS and the current interpretations of their interactions at the slit diaphragm.


Journal of The American Society of Nephrology | 2011

Screening for NPHS2 Mutations May Help Predict FSGS Recurrence after Transplantation

Therese Jungraithmayr; Katrin Hofer; Pierre Cochat; Gil Chernin; Gerard Cortina; Sonja Fargue; Paul C. Grimm; Tanja Knueppel; Andreas Kowarsch; Thomas Neuhaus; Philipp Pagel; Karl P. Pfeiffer; Franz Schäfer; Ulf Schönermarck; Tomáš Seeman; Burkhard Toenshoff; Stefanie Weber; Michelle P. Winn; Johannes Zschocke; Lothar Bernd Zimmerhackl

Steroid-resistant focal segmental glomerulosclerosis (FSGS) often recurs after renal transplantation. In this international survey, we sought to identify genotype-phenotype correlations of recurrent FSGS. We surveyed 83 patients with childhood-onset primary FSGS who received at least one renal allograft and analyzed 53 of these patients for NPHS2 mutations. The mean age at diagnosis was 6.7 years, and the mean age at first renal transplantation was 13 years. FSGS recurred in 30 patients (36%) after a median of 13 days (range, 1.5 to 152 days). Twenty-three patients received a second kidney transplant, and FSGS recurred in 11 (48%) after a median of 16 days (range, 2.7 to 66 days). None of the 11 patients with homozygous or compound heterozygous NPHS2 mutations developed recurrent FSGS compared with 45% of patients without mutations. These data suggest that genetic testing for pathogenic mutations may be important for prognosis and treatment of FSGS both before and after transplantation.

Collaboration


Dive into the Michelle P. Winn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge