Michelle R. Sanford
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle R. Sanford.
Environmental Entomology | 2008
Qiaolin Liu; Jeffery K. Tomberlin; Jeff A. Brady; Michelle R. Sanford; Ziniu Yu
Abstract Escherichia coli labeled with a green fluorescent protein was inoculated into sterile dairy manure at 7.0 log cfu/g. Approximately 125 black soldier fly larvae were placed in manure inoculated and homogenized with E. coli. Manure inoculated with E. coli but without black soldier fly larvae served as the control. For the first experiment, larvae were introduced into 50, 75, 100, or 125 g sterilized dairy manure inoculated and homogenized with E. coli and stored 72 h at 27°C. Black soldier fly larvae significantly reduced E. coli counts in all treatments. However, varying the amount of manure provided the black soldier fly larvae significantly affected their weight gain and their ability to reduce E. coli populations present. For the second experiment, larvae were introduced into 50 g manure inoculated with E. coli and stored for 72 h at 23, 27, 31, or 35°C. Minimal bacterial growth was recorded in the control held at 35°C and was excluded from the analysis. Black soldier fly larvae significantly reduced E. coli counts in manure held at remaining temperatures. Accordingly, temperature significantly influenced the ability of black soldier fly larvae to develop and reduce E. coli counts with greatest suppression occurring at 27°C.
Molecular Ecology | 2011
Clare D. Marsden; Yoosook Lee; Catelyn C. Nieman; Michelle R. Sanford; Joao Dinis; Cesario Martins; Amabelia Rodrigues; Anthony J. Cornel; Gregory C. Lanzaro
The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow has been contentious since first proposed. This controversy and a rarity of good examples have limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realized gene flow because of low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridization and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose that the extent of reproductive isolation between M and S varies across West Africa resulting in a ‘geographic mosaic of reproductive isolation’; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies.
Naturwissenschaften | 2006
Jeffery K. Tomberlin; Glen C. Rains; Sandy A. Allan; Michelle R. Sanford; W. Joe Lewis
The ability of many insects to learn has been documented. However, a limited number of studies examining associative learning in medically important arthropods has been published. Investigations into the associative learning capabilities of Culex quinquefasciatus Say were conducted by adapting methods commonly used in experiments involving Hymenoptera. Male and female mosquitoes were able to learn a conditioned stimulus that consisted of an odor not normally encountered in nature (synthetic strawberry or vanilla extracts) in association with an unconditioned stimulus consisting of either a sugar (males and females) or blood (females) meal. Such information could lead to a better understanding of the ability of mosquitoes to locate and select host and food resources in nature.
PLOS ONE | 2011
Michelle R. Sanford; Berna Demirci; Clare D. Marsden; Yoosook Lee; Anthony J. Cornel; Gregory C. Lanzaro
The M and S molecular forms of Anopheles gambiae s.s. have been considered incipient species for more than ten years, yet the mechanism underlying assortative mating of these incipient species has remained elusive. The discovery of the importance of harmonic convergence of wing beat frequency in mosquito mating and its relation to wing size have laid the foundation for exploring phenotypic divergence in wing size of wild populations of the two forms. In this study, wings from field collected mosquitoes were measured for wing length and wing width from two parts of the sympatric distribution, which differ with respect to the strength of assortative mating. In Mali, where assortative mating is strong, as evidenced by low rates of hybridization, mean wing lengths and wing widths were significantly larger than those from Guinea-Bissau. In addition, mean wing widths in Mali were significantly different between molecular forms. In Guinea-Bissau, assortative mating appears comparatively reduced and wing lengths and widths did not differ significantly between molecular forms. The data presented in this study support the hypothesis that wing beat frequency may mediate assortative mating in the incipient species of A. gambiae and represent the first documentation of a morphological difference between the M and S molecular forms.
PLOS ONE | 2013
Yoosook Lee; Travis C. Collier; Michelle R. Sanford; Clare D. Marsden; Abdrahamane Fofana; Anthony J. Cornel; Gregory C. Lanzaro
The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form) with genomes homozygous for j, b, c, and u inversions (Bamako form) in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb), but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes) involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae.
PLOS ONE | 2011
Michelle R. Sanford; Jeffery K. Tomberlin
Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes.
International Journal of Parasitology Research | 2012
Thanyakarn Srivoramas; Tarinee Chaiwong; Michelle R. Sanford
The aim of this study was to isolate and identify fungi on the external surfaces of adult house fly, Musca domestica and the blow fly, Chrysomya megacephala. These flies were collected from two districts in Northeastern Thailand: Muang and Warinchamrap in Ubon Ratchathani province, in September 2010. The main fungi isolated were Mucorales, followed by Yeast, Aspergillus niger and Penicillium spp. However, various species were identified including Aspergillus fumigatus, Gliocladium spp., Fusarium spp., Orechslera spp., Scedosporium apiospermum, Cladosporium spp. and Nocardia spp. This study demonstrated that both adult; M. domestica and C. megacephala have the ability to function as carriers for fungal spores and might be important in the transmission of fungi to humans in this area.
Entomologia Experimentalis Et Applicata | 2008
Jeffery K. Tomberlin; Glen C. Rains; Michelle R. Sanford
Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles. Current research on the development of biological sensors with insects is focusing on factors that influence the learning and memory ability of arthropods as well as potential mathematical techniques for improving the interpretation of the behavioral responses to conditioned stimuli. Chemical detection devices using arthropod‐based sensing could be used in situations where trained canines cannot be used (such as toxic environments) or are unavailable, electronic devices are too expensive and/or not of sufficient sensitivity, and when conditioning to target chemicals must be done within minutes of detection. The purpose of this article is to provide a brief review of the development of M. croceipes as a model system for exploring associative learning for the development of biological sensors.
Forensic Science International | 2015
Michelle R. Sanford
Domestic pets are commonly found in the homes of decedents whose deaths are investigated by a medical examiner or coroner. When these pets become trapped with a decomposing decedent they may resort to feeding on the body or succumb to starvation and/or dehydration and begin to decompose as well. In this case report photographic documentation of cases involving pets and decedents were examined from 2009 through the beginning of 2014. This photo review indicated that in many cases the pets were cats and dogs that were trapped with the decedent, died and were discovered in a moderate (bloat to active decay) state of decomposition. In addition three cases involving decomposing humans and their decomposing pets are described as they were processed for time of insect colonization by forensic entomological approach. Differences in timing and species colonizing the human and animal bodies were noted as was the potential for the human or animal derived specimens to contaminate one another at the scene.
Evolutionary Applications | 2013
Clare D. Marsden; Anthony J. Cornel; Yoosook Lee; Michelle R. Sanford; Laura C. Norris; Parker B. Goodell; Catelyn C. Nieman; Sarah Han; Amabelia Rodrigues; Joao Denis; Ahmed Ouledi; Gregory C. Lanzaro
Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea‐Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may be the most suitable site for trials with existing genetic modification technologies.