Michiel Hermes
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michiel Hermes.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Daniela J. Kraft; Ran Ni; Frank Smallenburg; Michiel Hermes; Kisun Yoon; David A. Weitz; Alfons van Blaaderen; Jan Groenewold; Marjolein Dijkstra; Willem K. Kegel
Colloidal particles with site-specific directional interactions, so called “patchy particles”, are promising candidates for bottom-up assembly routes towards complex structures with rationally designed properties. Here we present an experimental realization of patchy colloidal particles based on material independent depletion interaction and surface roughness. Curved, smooth patches on rough colloids are shown to be exclusively attractive due to their different overlap volumes. We discuss in detail the case of colloids with one patch that serves as a model for molecular surfactants both with respect to their geometry and their interactions. These one-patch particles assemble into clusters that resemble surfactant micelles with the smooth and attractive sides of the colloids located at the interior. We term these clusters “colloidal micelles”. Direct Monte Carlo simulations starting from a homogeneous state give rise to cluster size distributions that are in good agreement with those found in experiments. Important differences with surfactant micelles originate from the colloidal character of our model system and are investigated by simulations and addressed theoretically. Our new “patchy” model system opens up the possibility for self-assembly studies into finite-sized superstructures as well as crystals with as of yet inaccessible structures.
Journal of Chemical Physics | 2010
Laura Filion; Michiel Hermes; Ran Ni; Marjolein Dijkstra
Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.
Physical Review Letters | 2015
Neil Y. C. Lin; Ben Guy; Michiel Hermes; Chris Ness; Jin Sun; Wilson Poon; Itai Cohen
Shear thickening is a widespread phenomenon in suspension flow that, despite sustained study, is still the subject of much debate. The longstanding view that shear thickening is due to hydrodynamic clusters has been challenged by recent theory and simulations suggesting that contact forces dominate, not only in discontinuous, but also in continuous shear thickening. Here, we settle this dispute using shear reversal experiments on micron-sized silica and latex particles to measure directly the hydrodynamic and contact force contributions to shear thickening. We find that contact forces dominate even continuous shear thickening. Computer simulations show that these forces most likely arise from frictional interactions.
Nature Communications | 2014
Bing Liu; Thijs H. Besseling; Michiel Hermes; Ahmet Faik Demirörs; Arnout Imhof; van Blaaderen A
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Proceedings of the National Academy of Sciences of the United States of America | 2009
E. C. M. Vermolen; Anke Kuijk; Laura Filion; Michiel Hermes; Job H. J. Thijssen; Marjolein Dijkstra; A. van Blaaderen
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder.
EPL | 2010
Michiel Hermes; Marjolein Dijkstra
We study jammed configurations of polydisperse colloidal hard spheres with a well-defined temperature (constant kinetic energy) as a function of compression speed and size polydispersity. To this end, we employ event-driven molecular-dynamics simulations at fixed temperature, using an algorithm that strictly prohibits particle overlaps. We find a strong dependence of the jamming density on the compression rate that cannot be explained by crystallization. Additionally, we find that during the compression, the pressure follows the metastable liquid branch until the system gets kinetically arrested. Our results show that further compression yields jammed configurations that can be regarded as the infinite-pressure limit of glassy states and that different glasses can jam at different jamming densities depending on the compression rate. We present accurate data for the jamming density as a function of compression rate and size polydispersity.We study jammed configurations of hard spheres as a function of compression speed using an event-driven molecular dynamics algorithm. We find that during the compression, the pressure follows closely the metastable liquid branch until the system gets arrested into a glass state as the relaxation time exceeds the compression speed. Further compression yields a jammed configuration that can be regarded as the infinite pressure configuration of that glass state. Consequently, we find that the density of jammed packings varies from 0.638 to 0.658 for polydisperse hard spheres and from 0.635 to 0.645 for pure hard spheres upon decreasing the compression rate. This demonstrates that the density at which the systems falls out of equilibrium determines the density at which the system jams at infinite pressure. In addition, we give accurate data for the jamming density as a function of compression rate and size polydispersity.
Physical Review Letters | 2015
Ben Guy; Michiel Hermes; Wilson Poon
The rheology of suspensions of Brownian, or colloidal, particles (diameter d≲1 μm) differs markedly from that of larger grains (d≳50 μm). Each of these two regimes has been separately studied, but the flow of suspensions with intermediate particle sizes (1 μm≲d≲50 μm), which occur ubiquitously in applications, remains poorly understood. By measuring the rheology of suspensions of hard spheres with a wide range of sizes, we show experimentally that shear thickening drives the transition from colloidal to granular flow across the intermediate size regime. This insight makes possible a unified description of the (noninertial) rheology of hard spheres over the full size spectrum. Moreover, we are able to test a new theory of friction-induced shear thickening, showing that our data can be well fitted using expressions derived from it.
Scientific Reports | 2015
Tatjana Sentjabrskaja; Pinaki Chaudhuri; Michiel Hermes; Wilson Poon; Jürgen Horbach; Stefan U. Egelhaaf; Marco Laurati
Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow.
Journal of Chemical Physics | 2011
Matthieu Marechal; Michiel Hermes; Marjolein Dijkstra
We use computer simulations to investigate the crystallization dynamics of sedimenting hard spheres in large systems (hundreds of thousands of particles). We show that slow sedimentation results primarily in face-centered cubic (fcc) stacked crystals, instead of random hexagonal close packed or hexagonal close packed (hcp) crystals. We also find slanted stacking faults, in the fcc regions. However, we attribute the formation of fcc to the free energy difference between fcc and hcp and not to the presence of these slanted stacking faults. Although the free energy difference between hcp and fcc per particle is small (only 10(-3) times the thermal energy), it can become considerable, when multiplied by the number of particles in each domain. The ratio of fcc to hcp obtained from dynamic simulations is in excellent agreement with well-equilibrated Monte Carlo simulations, in which no slanted stacking faults were found. Our results explain a range of experiments on colloids, in which the amount of fcc increases upon lowering the sedimentation rate or decreasing the initial volume fraction.
Journal of Physics: Condensed Matter | 2015
Thijs H. Besseling; Michiel Hermes; Anke Kuijk; B. de Nijs; Tian-Song Deng; Marjolein Dijkstra; Arnout Imhof; A. van Blaaderen
Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.