Michiel M.A. Janssen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michiel M.A. Janssen.
Spine | 2009
Michiel M.A. Janssen; Xavier Drevelle; L. Humbert; Wafa Skalli; René M. Castelein
Study Design. A three-dimensional analysis of spino-pelvic alignment in 60 asymptomatic young adult males and females. Objectives. To analyze the differences in sagittal spino-pelvic alignment in a group of asymptomatic young adult males and females and describe gender specific reference values. Summary of Background Data. Several spinal disorders like idiopathic scoliosis and Scheuermanns disease have a well-known sex-related prevalence ratio. As spino-pelvic alignment plays an important role in spinal biomechanics, it is imperative to analyze possible differences between the male and female spino-pelvic alignment. Furthermore, in spinal fusion surgery, normal sagittal balance should be recreated as closely as possible. Methods. An innovative biplanar ultra low-dose radiographic technique was used to obtain three-dimensional reconstructions of the spine (T1–L5), sacrum, and pelvis in a freestanding position of 30 asymptomatic young male and 30 young female adults. Values were calculated for thoracic kyphosis (T4–T12), lumbar lordosis (L1–S1), total and regional lumbopelvic lordosis (PRT12, PRL2, PRL4, and PRL5), sagittal plumb line of T1, T4, and T9 (HAT1, HAT4, and HAT9), T1–L5 sagittal spinal inclination, T9 sagittal offset, and pelvic parameters (pelvic tilt, sacral slope, and pelvic incidence). In addition, vertebral inclination in the sagittal plane of each vertebra was measured. Differences in spino-pelvic alignment between the sexes were analyzed. Results. The female spine was more dorsally inclined (11° vs. 8°; P = 0.003). High thoracic and thoracolumbar vertebrae were more dorsally inclined in women than in men. Thoracic kyphosis, lumbar lordosis, regional lumbopelvic lordosis, sagittal plumb lines, T9 sagittal offset, and pelvic parameters were not statistically different between the sexes. Conclusion. These results indicate that the female spine is definitely different from the male spine. The spine as whole and individual vertebrae in certain regions of the normal spine is more backwardly inclined in females than in males. Based on our previous research this signifies that these spinal regions are subjected to different biomechanical loading conditions. These vertebral segments are possibly less rotationally stable in females than in males.
The Spine Journal | 2012
Tomaž Vrtovec; Michiel M.A. Janssen; Boštjan Likar; René M. Castelein; Max A. Viergever; Franjo Pernuš
BACKGROUND CONTEXT The sagittal alignment of the pelvis represents the basic mechanism for maintaining postural equilibrium, and a number of methods were developed to assess normal and pathologic pelvic alignments from two-dimensional sagittal radiographs in terms of positional and anatomic parameters. PURPOSE To provide a complete overview of the existing methods for quantitative evaluation of sagittal pelvic alignment and summarize the relevant publications. STUDY DESIGN Review article. METHODS An Internet search for terms related to sagittal pelvic alignment was performed to obtain relevant publications, which were further supplemented by selected publications found in their lists of references. By summarizing the obtained publications, the positional and anatomic parameters of sagittal pelvic alignment were described, and their values and relationships to other parameters and features were reported. RESULTS Positional pelvic parameters relate to the position and orientation of the observed subject and are represented by the sacral slope, pelvic tilt, pelvic overhang, sacral inclination, sacrofemoral angle, sacrofemoral distance, pelvic femoral angle, pelvic angle, and sacropelvic translation. Anatomic pelvic parameters relate to the anatomy of the observed subject and are represented by the pelvisacral angle (PSA), pelvic incidence (PI), pelvic thickness (PTH), sacropelvic angle (PRS1), pelvic radius (PR), femorosacral posterior angle (FSPA), sacral table angle (STA), and sacral anatomic orientation (SAO). The review was mainly focused on the evaluation of anatomic pelvic parameters, as they can be compared among subjects and therefore among different studies. However, ambiguous results were yielded for normal and pathologic subjects, as the reported values show a relatively high variability in terms of standard deviation for every anatomic parameter, which amounts to around 10 mm for PTH and PR; 10° for PSA, PI, and SAO; 9° for PRS1 and FSPA; and 5° for STA in the case of normal subjects and is usually even higher in the case of pathologic subjects. Among anatomic pelvic parameters, PI was the most studied and therefore represents a key parameter in the complex framework of sagittal spinal alignment and related deformities. From the reviewed studies, the regression lines for PI and the corresponding age of the subjects indicate that PI tends to increase with age for normal (PI = +0.17 × age+46.40) and scoliotic (PI = +0.20 × age+50.52) subjects and decrease with age for subjects with spondylolisis or spondylolisthesis (PI = -0.26 × age+75.69). CONCLUSIONS Normative values for anatomic parameters of sagittal pelvic alignment do not exist because the variability of the measured values is relatively high even for normal subjects but can be predictive for spinal alignment and specific spinopelvic pathologies.
The Spine Journal | 2011
Michiel M.A. Janssen; Roeland F. de Wilde; Jan-Willem M. Kouwenhoven; René M. Castelein
BACKGROUND CONTEXT Many animal species and an overwhelming variety of procedures that produce an experimental scoliosis have been reported in the literature. However, varying results have been reported on identical procedures in different animal species. Furthermore, the relevance of experimental animal models for the understanding of human idiopathic scoliosis remains questionable. PURPOSE To give an overview of the procedures that have been performed in animals in an attempt to induce experimental scoliosis and discuss the characteristics and significance of various animal models. STUDY DESIGN Extensive review of the literature on experimental animal models in scoliosis research. METHODS MEDLINE electronic database was searched, focusing on parameters concerning experimental scoliosis in animal models. The search was limited to the English, French, and German languages. RESULTS The chicken appeared to be the most frequently used experimental animal followed by the rabbit and rat. Additionally, scoliosis has been induced in primates, goats, sheep, pigs, cows, dogs, and frogs. Procedures widely varied from systemic to local procedures. CONCLUSIONS Although it has been possible to induce scoliosis-like deformities in many animals through various ways, this always required drastic surgical or systemic interventions, thus making the relation to human idiopathic scoliosis unclear. The basic drawback of all used models remains that no animal resembles the upright biomechanical spinal loading condition of man, with its inherent rotational instability of certain spinal segments. The fundamental question remains what the significance of these animal models is to the understanding of human idiopathic scoliosis.
Spine | 2011
Michiel M.A. Janssen; Jan-Willem M. Kouwenhoven; Tom P.C. Schlösser; Max A. Viergever; Lambertus W. Bartels; René M. Castelein; Koen L. Vincken
Study Design. Vertebral rotation was systematically analyzed in the normal, nonscoliotic thoracic spine of children aged 0 to 16 years. Subgroups were created to match the infantile, juvenile, and adolescent age groups according to the criteria of the Scoliosis Research Society. Objective. To determine whether a distinct pattern of vertebral rotation in the transverse plane exists in the normal, nonscoliotic infantile, juvenile, and adolescent spine. Summary of Background Data. We assume that, once the spine starts to deteriorate into a scoliotic deformity, it will follow a preexisting rotational pattern. Recently, we identified a rotational pattern in the normal nonscoliotic adult spine that corresponds to the most common curve types in adolescent idiopathic scoliosis. In infantile idiopathic scoliosis, curves are typically left sided and boys are affected more often than girls, whereas in adolescent idiopathic scoliosis, the thoracic curve is typically right sided and predominantly girls are affected. The present study is the first systematic analysis of vertebral rotation in the normal childrens spine. Methods. Vertebral rotation in the transverse plane of T2–T12 was measured by using a semiautomatic method on 146 computed tomographic scans of children (0–16 years old) without clinical or radiologic evidence of spinal pathology. Scans were mainly made for reasons such as recurrent respiratory tract infections, malignancies, or immune disorders. Vertebral rotational patterns were analyzed in the infantile (0–3-year-old), juvenile (4–9-year-old), and adolescent (10–16-year-old) boys and girls. Results. In the infantile spine, vertebrae T2–T6 were significantly rotated to the left (P < 0.001). In the juvenile spine, T4 was significantly rotated to the left. In the adolescent spine, T6–T12 were significantly rotated to the right (P ⩽ 0.001). Rotation to the left was more pronounced in infantile boys than in the girls (P = 0.023). In juvenile and adolescent children, no statistical differences in rotation were found between the sexes. Conclusion. These data support the hypothesis that the direction of the spinal curve in idiopathic scoliosis is determined by the built-in rotational pattern that the spine exhibits at the time of onset. The well-known predominance of right-sided thoracic curves in adolescent idiopathic scoliosis and left-sided curves in infantile idiopathic scoliosis can be explained by the observed patterns of vertebral rotation that preexist at the corresponding age.
Spine | 2012
Tomaž Vrtovec; Michiel M.A. Janssen; Franjo Pernuš; René M. Castelein; Max A. Viergever
Study Design. Pelvic incidence (PI) was measured in 3 dimensions from computed tomographic (CT) images of normal subjects using a computerized method. Objective. To obtain the angle of PI from 3-dimensional (3D) images and analyze its distribution in a normal population. Summary of Background Data. The sagittal alignment of the pelvis is usually evaluated in 2-dimensional (2D) sagittal radiographs. The purpose of this study is to measure and analyze PI, which represents a key parameter of sagittal alignment, in 3D images. Methods. A computerized method, based on image-processing techniques, was used to automatically determine the anatomical references required to measure PI, that is, the centers of the femoral heads in 3 dimensions and the center and inclination of the sacral end plate in 3 dimensions. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis from which PI was calculated. Results. PI was successfully obtained in CT images of 370 normal subjects (mean age: 41.5 years; range: 1–87 years). The mean PI (± standard deviation) was equal to 46.6° (±9.2°) for male subjects, 47.6° (±10.7°) for female subjects, and 47.1° (±10.0°) for both sexes. No statistically significant differences were obtained between the sexes, and statistically significant correlation was obtained between PI and age. Conclusion. In this study, the sagittal alignment of the pelvis was evaluated in terms of PI completely in 3 dimensions. The results show that computerized measurements of PI in 3 dimensions are less variable than manual measurements. The large span of PI values for normal subjects indicates that the natural variation of PI is relatively large.
The Spine Journal | 2013
Michiel M.A. Janssen; Koen L. Vincken; Sjoerd M. van Raak; Tomaž Vrtovec; Bastiaan Kemp; Max A. Viergever; Lambertus W. Bartels; René M. Castelein
BACKGROUND CONTEXT It is well known that spinal biomechanics and familial predisposition play an important role in the onset and evolution of idiopathic scoliosis. The relationship between the sagittal profile of the spine and spinal biomechanics has also been established in a number of studies. It has been suggested previously that a certain sagittal spinal configuration with implications for spinal rotational stiffness is inherited, thus providing a possible explanation for the well-known hereditary component in adolescent idiopathic scoliosis (AIS). PURPOSE To test the hypothesis that the familial trend in AIS may be partially explained by the inheritance of a sagittal spinal profile, which has been shown to make the spine less resistant to rotatory decompensation. STUDY DESIGN A prospective case controlled radiographic analysis of the sagittal profile of the spine and spinopelvic alignment. PATIENT SAMPLE One hundred two parents of scoliotic children, compared with 102 age-matched controls (parents of nonscoliotic children). OUTCOME MEASURES Physiologic measures: sagittal profile of the spine and spinopelvic alignment. METHODS Freestanding lateral radiographs of 51 parent couples of girls with severe (Cobb angle >30°) progressive AIS (AIS group) and 102 age-matched controls (control group) were taken. Parents with manifest spinal deformities or spinal pathology of any kind were excluded based on history or spinal X-ray to avoid distorted sagittal images with unreliable measurements. Values were calculated for thoracic kyphosis (T4-T12), lumbar lordosis (L1-L5), spinal balance (sagittal plumb line of C7 and T4, T1-L5 sagittal spinal inclination, T9 sagittal offset), curvature parameters (expressed in the area under the curve [AUC]), and pelvic parameters (pelvic tilt, pelvic incidence, and sacral slope). In addition, the height, offset, and length of the posteriorly inclined spinal segment, inclination of each vertebra, and normalized sagittal spinal profile were calculated. Differences in spinopelvic alignment between fathers and mothers of both groups were analyzed. RESULTS In the fathers of the AIS group, the plumb line of T4 was significantly less posteriorly positioned relative to the hip axis (79 mm vs. 92 mm; p=.009); the overall AUC and the lumbar AUC were significantly smaller (p=.002 and p=.008, respectively) as compared with the fathers in the control group. Vertebrae T11-L2 were significantly less backwardly inclined in the fathers of the AIS group (T11, L2: p<.05 and T12-L1: p<.01). An analysis of sagittal spinal profile showed a significantly flatter spine in the fathers of the AIS group (p=.01). No significant differences were observed in height, offset, and length of the backwardly inclined spinal segment. In the mothers of the AIS group, no statistically significant differences were observed in the spinopelvic parameters, spinal curvature, inclination of the vertebrae, and declive spinal segment parameters or sagittal spinal profile as compared with the mothers in the control group. CONCLUSIONS The sagittal spinal profile of the fathers of scoliotic children was significantly flatter than the sagittal spinal profile of fathers of nonscoliotic children. No difference was found in the sagittal spinal profile of the mothers of scoliotic children as compared with mothers of nonscoliotic children. Although it is well known that scoliotic mothers have an increased risk of having a scoliotic offspring, this study indicates that fathers may possibly contribute as well through their sagittal spinal profile to the inheritance of idiopathic scoliosis.
European Spine Journal | 2010
Michiel M.A. Janssen; Koen L. Vincken; Bastiaan Kemp; Marina Obradov; Marinus de Kleuver; Max A. Viergever; René M. Castelein; Lambertus W. Bartels
Both the humans as well as the quadrupedal spine have been shown to exhibit a pattern of pre-existent rotation that is similar in direction to what is found in the most common types of idiopathic scoliosis. It has been postulated that human bipedalism introduces forces to the spine that increase a tendency of the vertebrae to rotate. The objective of this study was to examine the effect of body position on vertebral rotation in vivo. Thirty asymptomatic volunteers underwent magnetic resonance imaging scanning of the spine (T2–L5) in three different body positions; upright, quadrupedal-like (on hands-and-knees) and supine. Vertebral rotation in the local transverse plane was measured according to a pre-established method and compared at different spinal levels between the three body positions. It was shown that in all three positions the mid- and lower thoracic vertebrae were predominantly rotated to the right. However, vertebral rotation was significantly less in the quadrupedal position than in both the standing upright and supine positions.Both the humans as well as the quadrupedal spine have been shown to exhibit a pattern of pre-existent rotation that is similar in direction to what is found in the most common types of idiopathic scoliosis. It has been postulated that human bipedalism introduces forces to the spine that increase a tendency of the vertebrae to rotate. The objective of this study was to examine the effect of body position on vertebral rotation in vivo. Thirty asymptomatic volunteers underwent magnetic resonance imaging scanning of the spine (T2-L5) in three different body positions; upright, quadrupedal-like (on hands-and-knees) and supine. Vertebral rotation in the local transverse plane was measured according to a pre-established method and compared at different spinal levels between the three body positions. It was shown that in all three positions the mid- and lower thoracic vertebrae were predominantly rotated to the right. However, vertebral rotation was significantly less in the quadrupedal position than in both the standing upright and supine positions.
Spine | 2013
Jasper Johan Homminga; Anne M. Lehr; Gerdine Meijer; Michiel M.A. Janssen; Tom P.C. Schlösser; Gijsbertus Jacob Verkerke; René M. Castelein
Study Design. Finite element study. Objective. To analyze the effects of posterior shear loads, disc degeneration, and the combination of both on spinal torsion stiffness. Summary of Background Data. Scoliosis is a 3-dimensional deformity of the spine that presents itself mainly in adolescent girls and elderly patients. Our concept of its etiopathogenesis is that an excess of posteriorly directed shear loads, relative to the bodys intrinsic stabilizing mechanisms, induces a torsional instability of the spine, making it vulnerable to scoliosis. Our hypothesis for the elderly spine is that disc degeneration compromises the stabilizing mechanisms. Methods. In an adult lumbar motion segment model, the disc properties were varied to simulate different aspects of disc degeneration. These models were then loaded with a pure torsion moment in combination with either a shear load in posterior direction, no shear, or a shear load in anterior direction. Results. Posteriorly directed shear loads reduced torsion stiffness, anteriorly directed shear loads increased torsion stiffness. These effects were mainly caused by a later (respectively earlier) onset of facet joint contact. Disc degeneration cases with a decreased disc height that leads to slackness of the annular fibers and ligaments caused a significantly decreased torsional stiffness. The combination of this stage with posterior shear loading reduced the torsion stiffness to less than half the stiffness of a healthy disc without shear loads. The end stage of disc degeneration increased torsion stiffness again. Conclusion. The combination of a decreased disc height, that leads to slack annular fibers and ligaments, and posterior shear loads very significantly affects torsional stiffness: reduced to less than half the stiffness of a healthy disc without shear loads. Disc degeneration, thus, indeed compromises the stabilizing mechanisms of the elderly spine. A combination with posteriorly directed shear loads could then make it vulnerable to scoliosis. Level of Evidence: N/A
The Spine Journal | 2013
Tomaž Vrtovec; Michiel M.A. Janssen; Boštjan Likar; René M. Castelein; Max A. Viergever; Franjo Pernuš
BACKGROUND CONTEXT It is generally accepted that for normal subjects the angle of pelvic incidence (PI) increases during childhood and then remains unchanged throughout adolescence and adulthood. However, recent findings show that PI increases linearly throughout the lifespan due to morphological changes of the pelvis. PURPOSE A retrospective study aiming to determine the extent of morphological changes of the pelvis related to the age of the subjects. STUDY DESIGN Pelvic morphology was evaluated in a normal adult population by measuring the anatomical parameters of sagittal pelvic alignment. PATIENT SAMPLE The final study cohort consisted of 330 subjects (mean age, 45.3 years; standard deviation, 18.1 years; range, 18-87 years; 164 male and 166 female subjects). OUTCOME MEASURES Physiologic measures, obtained as measurements of PI, sacral end plate width (S1W), and pelvic thickness (PTH). METHODS Parameters of PI, S1W, and PTH were evaluated from computed tomography images of the subjects. The measured PTH was normalized according to S1W and age of the subjects, allowing the comparison among anatomies of different sizes. The normalized components of PTH in anteroposterior and cephalocaudal directions were computed to determine the configuration and extent of changes in pelvic morphology related to subject age. RESULTS Statistically significant correlation with both age and PI was obtained for all normalized parameters (except for the anteroposterior component of PTH for male subjects), and no statistically significant differences were observed between the sexes. With increasing PI that occurs due to the aging process, a decrease of PTH can be observed that is manifested not only as an increase of the distance between the sacrum and the hip axis in the anterior direction but considerably more as a decrease of the distance between the sacrum and the hip axis in the cephalic direction. By considering these morphological changes in the pelvis simultaneously, the hip axis can move only within a narrow area. CONCLUSIONS The changes in pelvic morphology due to the aging process occur in the anterior direction, which may be due to the remodeling process affecting the coxal bone that results in an anterior drift of the acetabulum relative to the sacrum. More importantly, the changes are considerably more evident in the cephalic direction, which may be the result of the weight-bearing loads and consequent wear of acetabular cartilage.
The Spine Journal | 2017
Tom P.C. Schlösser; Michiel M.A. Janssen; Tom Hogervorst; Tomaž Vrtovec; John de Vos; F. Cumhur Oner; René M. Castelein
21 The importance of sagittal spino-pelvic alignment for posture and upright human spinal 22 biomechanics, and its role in the etio-pathogenesis of different spinal pathologies is well 23 recognized. In human evolution, morphological changes of the pelvis are believed to be a 24