Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michiel S. van der Heijden is active.

Publication


Featured researches published by Michiel S. van der Heijden.


The Lancet | 2016

Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial

Jonathan E. Rosenberg; Jean H. Hoffman-Censits; Thomas Powles; Michiel S. van der Heijden; Arjun Vasant Balar; Andrea Necchi; Nancy A. Dawson; Peter H. O'Donnell; Ani Balmanoukian; Yohann Loriot; Sandy Srinivas; M. Retz; Petros Grivas; Richard W. Joseph; Matthew D. Galsky; Mark T. Fleming; Daniel P. Petrylak; Jose Luis Perez-Gracia; Howard A. Burris; Daniel Castellano; Christina Canil; Joaquim Bellmunt; Dean F. Bajorin; Dorothee Nickles; Richard Bourgon; Garrett Michael Frampton; Na Cui; Sanjeev Mariathasan; Oyewale O. Abidoye; Gregg Fine

BACKGROUND Patients with metastatic urothelial carcinoma have few treatment options after failure of platinum-based chemotherapy. In this trial, we assessed treatment with atezolizumab, an engineered humanised immunoglobulin G1 monoclonal antibody that binds selectively to programmed death ligand 1 (PD-L1), in this patient population. METHODS For this multicentre, single-arm, two-cohort, phase 2 trial, patients (aged ≥18 years) with inoperable locally advanced or metastatic urothelial carcinoma whose disease had progressed after previous platinum-based chemotherapy were enrolled from 70 major academic medical centres and community oncology practices in Europe and North America. Key inclusion criteria for enrolment were Eastern Cooperative Oncology Group performance status of 0 or 1, measurable disease defined by Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST v1.1), adequate haematological and end-organ function, and no autoimmune disease or active infections. Formalin-fixed paraffin-embedded tumour specimens with sufficient viable tumour content were needed from all patients before enrolment. Patients received treatment with intravenous atezolizumab (1200 mg, given every 3 weeks). PD-L1 expression on tumour-infiltrating immune cells (ICs) was assessed prospectively by immunohistochemistry. The co-primary endpoints were the independent review facility-assessed objective response rate according to RECIST v1.1 and the investigator-assessed objective response rate according to immune-modified RECIST, analysed by intention to treat. A hierarchical testing procedure was used to assess whether the objective response rate was significantly higher than the historical control rate of 10% at an α level of 0·05. This study is registered with ClinicalTrials.gov, number NCT02108652. FINDINGS Between May 13, 2014, and Nov 19, 2014, 486 patients were screened and 315 patients were enrolled into the study. Of these patients, 310 received atezolizumab treatment (five enrolled patients later did not meet eligibility criteria and were not dosed with study drug). The PD-L1 expression status on infiltrating immune cells (ICs) in the tumour microenvironment was defined by the percentage of PD-L1-positive immune cells: IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%). The primary analysis (data cutoff May 5, 2015) showed that compared with a historical control overall response rate of 10%, treatment with atezolizumab resulted in a significantly improved RECIST v1.1 objective response rate for each prespecified immune cell group (IC2/3: 27% [95% CI 19-37], p<0·0001; IC1/2/3: 18% [13-24], p=0·0004) and in all patients (15% [11-20], p=0·0058). With longer follow-up (data cutoff Sept 14, 2015), by independent review, objective response rates were 26% (95% CI 18-36) in the IC2/3 group, 18% (13-24) in the IC1/2/3 group, and 15% (11-19) overall in all 310 patients. With a median follow-up of 11·7 months (95% CI 11·4-12·2), ongoing responses were recorded in 38 (84%) of 45 responders. Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolizumab. Grade 3-4 treatment-related adverse events, of which fatigue was the most common (five patients [2%]), occurred in 50 (16%) of 310 treated patients. Grade 3-4 immune-mediated adverse events occurred in 15 (5%) of 310 treated patients, with pneumonitis, increased aspartate aminotransferase, increased alanine aminotransferase, rash, and dyspnoea being the most common. No treatment-related deaths occurred during the study. INTERPRETATION Atezolizumab showed durable activity and good tolerability in this patient population. Increased levels of PD-L1 expression on immune cells were associated with increased response. This report is the first to show the association of TCGA subtypes with response to immune checkpoint inhibition and to show the importance of mutation load as a biomarker of response to this class of agents in advanced urothelial carcinoma. FUNDING F Hoffmann-La Roche Ltd.


Clinical Cancer Research | 2005

In vivo Therapeutic Responses Contingent on Fanconi Anemia/BRCA2 Status of the Tumor

Michiel S. van der Heijden; Jonathan R. Brody; David A. Dezentje; Eike Gallmeier; Steven C. Cunningham; Michael J. Swartz; Angelo M. DeMarzo; G. Johan A. Offerhaus; William H. Isacoff; Ralph H. Hruban; Scott E. Kern

Purpose:BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Experimental Design: Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. Results: A distinct dichotomy of drug responses was observed. Fanconi anemia–defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia–proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11FANCC did not. Conclusions: MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.


American Journal of Pathology | 2004

Functional Defects in the Fanconi Anemia Pathway in Pancreatic Cancer Cells

Michiel S. van der Heijden; Jonathan R. Brody; Eike Gallmeier; Steven C. Cunningham; David A. Dezentje; Dong Shen; Ralph H. Hruban; Scott E. Kern

Biallelic BRCA2-mutations can cause Fanconi anemia and are found in approximately 7% of pancreatic cancers. Recently, several sequence changes in FANCC and FANCG were reported in pancreatic cancer. Functional defects in the Fanconi pathway can result in a marked hypersensitivity to interstrand crosslinking agents, such as mitomycin C. The functional implications of mutations in the Fanconi pathway in cancer have not been fully studied yet; these studies are needed to pave the way for clinical trials of treatment with crosslinking agents of Fanconi-defective cancers. The competence of the proximal Fanconi pathway was screened in 21 pancreatic cancer cell lines by an assay of Fancd2 monoubiquitination using a Fancd2 immunoblot. The pancreatic cancer cell lines Hs766T and PL11 were defective in Fancd2 monoubiquitination. In PL11, this defect led to the identification of a large homozygous deletion in FANCC, the first cancer cell line found to be FANCC-null. The Fanconi-defective cell lines Hs766T, PL11, and CAPAN1 were hypersensitive to the crosslinking agent mitomycin C and some to cis-platin, as measured by cell survival assays and G(2)/M cell-cycle arrest. These results support the practical exploration of crosslinking agents for non-Fanconi anemia patients that have tumors defective in the Fanconi pathway.


Nature | 2018

TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

Sanjeev Mariathasan; Shannon J. Turley; Dorothee Nickles; Alessandra Castiglioni; Kobe Yuen; Yulei Wang; Edward E. Kadel; Hartmut Koeppen; Jillian L. Astarita; Rafael Cubas; Suchit Jhunjhunwala; Romain Banchereau; Yagai Yang; Yinghui Guan; Cecile Chalouni; James Ziai; Yasin Şenbabaoǧlu; Stephen Santoro; Daniel Sheinson; Jeffrey Hung; Jennifer Giltnane; Andrew A. Pierce; Kathryn Mesh; Steve Lianoglou; Johannes Riegler; Richard A. D. Carano; Pontus Eriksson; Mattias Höglund; Loan Somarriba; Daniel L. Halligan

Therapeutic antibodies that block the programmed death-1 (PD-1)–programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.


European Urology | 2017

Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy

Roland Seiler; Hussam Al-Deen Ashab; Nicholas Erho; Bas W.G. van Rhijn; Brian Winters; James Douglas; Kim E. van Kessel; Elisabeth E. Fransen van de Putte; Matthew Sommerlad; Natalie Q. Wang; Voleak Choeurng; Ewan A. Gibb; Beatrix Palmer-Aronsten; Lucia L. Lam; Christine Buerki; Elai Davicioni; Gottfrid Sjödahl; Jordan Kardos; Katherine A. Hoadley; Seth P. Lerner; David J. McConkey; Woonyoung Choi; William Y. Kim; Bernhard Kiss; George N. Thalmann; Tilman Todenhöfer; Simon J. Crabb; Scott North; Ellen C. Zwarthoff; Joost L. Boormans

BACKGROUND An early report on the molecular subtyping of muscle-invasive bladder cancer (MIBC) by gene expression suggested that response to neoadjuvant chemotherapy (NAC) varies by subtype. OBJECTIVE To investigate the ability of molecular subtypes to predict pathological downstaging and survival after NAC. DESIGN, SETTING, AND PARTICIPANTS Whole transcriptome profiling was performed on pre-NAC transurethral resection specimens from 343 patients with MIBC. Samples were classified according to four published molecular subtyping methods. We developed a single-sample genomic subtyping classifier (GSC) to predict consensus subtypes (claudin-low, basal, luminal-infiltrated and luminal) with highest clinical impact in the context of NAC. Overall survival (OS) according to subtype was analyzed and compared with OS in 476 non-NAC cases (published datasets). INTERVENTION Gene expression analysis was used to assign subtypes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Receiver-operating characteristics were used to determine the accuracy of GSC. The effect of GSC on survival was estimated by Cox proportional hazard regression models. RESULTS AND LIMITATIONS The models generated subtype calls in expected ratios with high concordance across subtyping methods. GSC was able to predict four consensus molecular subtypes with high accuracy (73%), and clinical significance of the predicted consensus subtypes could be validated in independent NAC and non-NAC datasets. Luminal tumors had the best OS with and without NAC. Claudin-low tumors were associated with poor OS irrespective of treatment regimen. Basal tumors showed the most improvement in OS with NAC compared with surgery alone. The main limitations of our study are its retrospective design and comparison across datasets. CONCLUSIONS Molecular subtyping may have an impact on patient benefit to NAC. If validated in additional studies, our results suggest that patients with basal tumors should be prioritized for NAC. We discovered the first single-sample classifier to subtype MIBC, which may be suitable for integration into routine clinical practice. PATIENT SUMMARY Different molecular subtypes can be identified in muscle-invasive bladder cancer. Although cisplatin-based neoadjuvant chemotherapy improves patient outcomes, we identified that the benefit is highest in patients with basal tumors. Our newly discovered classifier can identify these molecular subtypes in a single patient and could be integrated into routine clinical practice after further validation.


The Lancet | 2017

Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial

Thomas Powles; Ignacio Duran; Michiel S. van der Heijden; Yohann Loriot; Nicholas J. Vogelzang; Ugo De Giorgi; Stéphane Oudard; M. Retz; Daniel Castellano; Aristotelis Bamias; Aude Flechon; Gwenaelle Gravis; Syed A. Hussain; Toshimi Takano; Ning Leng; Edward E. Kadel; Romain Banchereau; Priti Hegde; Sanjeev Mariathasan; Na Cui; Xiaodong Shen; Christina Louise Derleth; Marjorie Green; Alain Ravaud

BACKGROUND Few options exist for patients with locally advanced or metastatic urothelial carcinoma after progression with platinum-based chemotherapy. We aimed to assess the safety and efficacy of atezolizumab (anti-programmed death-ligand 1 [PD-L1]) versus chemotherapy in this patient population. METHODS We conducted this multicentre, open-label, phase 3 randomised controlled trial (IMvigor211) at 217 academic medical centres and community oncology practices mainly in Europe, North America, and the Asia-Pacific region. Patients (aged ≥18 years) with metastatic urothelial carcinoma who had progressed after platinum-based chemotherapy were randomly assigned (1:1), via an interactive voice and web response system with a permuted block design (block size of four), to receive atezolizumab 1200 mg or chemotherapy (physicians choice: vinflunine 320 mg/m2, paclitaxel 175 mg/m2, or 75 mg/m2 docetaxel) intravenously every 3 weeks. Randomisation was stratified by PD-L1 expression (expression on <1% [IC0] or 1% to <5% [IC1] of tumour-infiltrating immune cells vs ≥5% of tumour-infiltrating immune cells [IC2/3]), chemotherapy type (vinflunine vs taxanes), liver metastases (yes vs no), and number of prognostic factors (none vs one, two, or three). Patients and investigators were aware of group allocation. Patients, investigators, and the sponsor were masked to PD-L1 expression status. The primary endpoint of overall survival was tested hierarchically in prespecified populations: IC2/3, followed by IC1/2/3, followed by the intention-to-treat population. This study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT02302807. FINDINGS Between Jan 13, 2015, and Feb 15, 2016, we randomly assigned 931 patients from 198 sites to receive atezolizumab (n=467) or chemotherapy (n=464). In the IC2/3 population (n=234), overall survival did not differ significantly between patients in the atezolizumab group and those in the chemotherapy group (median 11·1 months [95% CI 8·6-15·5; n=116] vs 10·6 months [8·4-12·2; n=118]; stratified hazard ratio [HR] 0·87, 95% CI 0·63-1·21; p=0·41), thus precluding further formal statistical analysis. Confirmed objective response rates were similar between treatment groups in the IC2/3 population: 26 (23%) of 113 evaluable patients had an objective response in the atezolizumab group compared with 25 (22%) of 116 patients in the chemotherapy group. Duration of response was numerically longer in the atezolizumab group than in the chemotherapy group (median 15·9 months [95% CI 10·4 to not estimable] vs 8·3 months [5·6-13·2]; HR 0·57, 95% CI 0·26-1·26). In the intention-to-treat population, patients receiving atezolizumab had fewer grade 3-4 treatment-related adverse events than did those receiving chemotherapy (91 [20%] of 459 vs 189 [43%] of 443 patients), and fewer adverse events leading to treatment discontinuation (34 [7%] vs 78 [18%] patients). INTERPRETATION Atezolizumab was not associated with significantly longer overall survival than chemotherapy in patients with platinum-refractory metastatic urothelial carcinoma overexpressing PD-L1 (IC2/3). However, the safety profile for atezolizumab was favourable compared with chemotherapy, Exploratory analysis of the intention-to-treat population showed well-tolerated, durable responses in line with previous phase 2 data for atezolizumab in this setting. FUNDING F Hoffmann-La Roche, Genentech.


European Urology | 2016

ERBB2 Mutations Characterize a Subgroup of Muscle-invasive Bladder Cancers with Excellent Response to Neoadjuvant Chemotherapy

Floris H. Groenendijk; Jeroen de Jong; Elisabeth E. Fransen van de Putte; Magali Michaut; Andreas Schlicker; Dennis Peters; Arno Velds; Marja Nieuwland; Michel M. van den Heuvel; Ron M. Kerkhoven; Lodewijk F.A. Wessels; Annegien Broeks; Bas W.G. van Rhijn; René Bernards; Michiel S. van der Heijden

UNLABELLED A pathologic complete response to neoadjuvant chemotherapy (NAC) containing platinum is a strong prognostic determinant for patients with muscle-invasive bladder cancer (MIBC). Despite comprehensive molecular characterization of bladder cancer, associations of molecular alterations with treatment response are still largely unknown. We selected pathologic complete responders (ypT0N0; n=38) and nonresponders (higher than ypT2; n=33) from a cohort of high-grade MIBC patients treated with NAC. DNA was isolated from prechemotherapy tumor tissue and used for next-generation sequencing of 178 cancer-associated genes (discovery cohort) or targeted sequencing (validation cohort). We found that 9 of 38 complete responders had erb-b2 receptor tyrosine kinase 2 (ERBB2) missense mutations, whereas none of 33 nonresponders had ERBB2 mutations (p=0.003). ERBB2 missense mutations in complete responders were mostly confirmed activating mutations. ERCC2 missense mutations, recently found associated with response to NAC, were more common in complete responders; however, this association did not reach statistical significance in our cohort. We conclude that ERBB2 missense mutations characterize a subgroup of MIBC patients with an excellent response to NAC. PATIENT SUMMARY In this report we looked for genetic alterations that can predict the response to neoadjuvant chemotherapy (NAC) in bladder cancer. We found that mutations in the gene ERBB2 are exclusively present in patients responding to NAC.


Cancer Biology & Therapy | 2004

The Genetics of FANCC and FANCG in Familial Pancreatic Cancer

Carmelle D. Rogers; Michiel S. van der Heijden; Kieran Brune; Charles J. Yeo; Ralph H. Hruban; Scott E. Kern; Michael Goggins

Patients with Fanconi anemia (FA) display a wide variety of defects including bone marrow failure and a high risk of developing cancer. Multiple Fanconi genes exist whose proteins form a complex that along with BRCA1 is important for the translocalization of FANCD2 to nuclear foci 1. With BRCA2 and RAD51, this complex is thought to have a role in the repair of DNA double strand breaks. The genetic basis of another form of Fanconi anemia- FANCD1, was recently identified as the result of biallelic inactivating mutations of the BRCA2 gene 2. Since carriers of germline BRCA2 gene mutations have an increased risk of developing pancreatic cancer, the FA pathway has been investigated as a tumor suppressor pathway in pancreatic cancer. Recently van der Heijden et al. identified FANCC and FANCG gene mutations in patients with young-onset pancreatic cancer 3. Here, we determined the role of germline FA gene mutations in kindred in which several family members had pancreatic cancer. Sequence analysis of 38 individuals with familial pancreatic cancer enrolled in the National Familial Pancreatic Tumor Registry (NFPTR) revealed previously identified polymorphisms within two exons and one intron of FANCC, and in three introns of FANCG. In addition, an unaffected relative from one family contained an exonic polymorphism within the FANCC gene. These and published data suggest the possibility that although germline and somatic mutations in FANCC and FANCG may contribute to the occurrence of pancreatic cancers, the pancreatic cancers that arise do so in an apparent sporadic fashion rather than with a phenotype of familial pancreatic cancer. FANCC and FANCG mutations may have low penetrance for the pancreatic cancer phenotype. Summary: Sequencing of the FANCC and FANCG genes from 38 familial pancreatic cancer patients revealed polymorphisms within the introns and exons of these genes. These sequence variations do not appear to contribute to familial pancreatic cancer.


Cancer Research | 2004

Large-Scale Allelotype of Pancreaticobiliary Carcinoma Provides Quantitative Estimates of Genome-Wide Allelic Loss

Christine A. Iacobuzio-Donahue; Michiel S. van der Heijden; Mark R. Baumgartner; William J. Troup; Jane Romm; Kimberly F. Doheny; Elizabeth W. Pugh; Charles J. Yeo; Michael Goggins; Ralph H. Hruban; Scott E. Kern

Studies of the allelotype of human cancers have provided valuable insights into those chromosomes targeted for genetic inactivation during tumorigenesis. We present the comprehensive allelotype of 82 xenografted pancreatic or biliary cancers using 386 microsatellite markers and spanning the entire genome at an average coverage of 10 cM. Allelic losses were nonrandomly distributed across the genome and most prevalent for chromosome arms 9p, 17p, and 18q (>60%), sites of the known tumor suppressor genes CDKN2A, TP53, and MADH4. Moderate rates of loss (at any one locus) were noted for chromosome arms 3p, 6q, 8p, 17q, 18p, 21q, and 22q (40–60%). A mapping of individual loci of allelic loss revealed 11 “hot spots” of loss of heterozygosity (>30%) in addition to loci near known tumor suppressor genes, corresponding to 3p, 4q, 5q, 6q, 8p, 12q, 14q, 21q, 22q, and the X chromosome. The average genomic fractional allelic loss was 15.3% of all tested markers for the 82 xenografted cancers, with allelic loss affecting as little as 1.5% to as much as 32.1% of tested loci, a remarkable 20-fold range. We determined the chromosome location (in cM) of each of the 386 markers used based on mapping data available from the National Center for Biotechnology Information, and we provide the first distance-based estimates of chromosome material lost in a human epithelial cancer. Specifically, we found that the cumulative size of allelic losses ranged from 58 to 1160 cM, with an average loss of 561.32 cM/tumor. We compared the genomic fractional allelic loss of each xenografted cancer with known clinicopathological features for each patient and found a significant correlation with smoking status (P < 0.01). These findings offer new loci for investigation of the genetic alterations common to pancreaticobiliary cancers and aid the understanding of mechanisms of allelic loss in human carcinogenesis.


Clinical Cancer Research | 2010

Inhibition of the PI3K Pathway: Hope We Can Believe in?

Michiel S. van der Heijden; René Bernards

The phosphoinositide 3-kinase (PI3K) pathway is one of the most commonly activated pathways in human cancer and has roles in cell proliferation, apoptosis, protein synthesis, and metabolism. The PI3K pathway can be activated by amplification or activating mutation of upstream receptor tyrosine kinases, and by mutations or deletions downstream in the pathway. Trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor 2 (HER2), has been one of the most successful and most widely used targeted therapies. However, many HER2-positive cancers are not sensitive to HER2-based therapies or become resistant during treatment; downstream activation of the pathway is one of the causes of resistance. Because of the common activation of the PI3K pathway in cancer, compounds targeting proteins downstream in the pathway have been developed in recent years. The mammalian target of rapamycin (mTOR) inhibitors everolimus and temsirolimus have been shown to be beneficial in certain cancer types; many other inhibitors of the PI3K pathway are in various stages of clinical development. Ongoing research should clarify which molecular cancer subtypes are most susceptible to specific compounds and explore combinatorial approaches, ultimately leading to individualized patient treatment. Clin Cancer Res; 16(12); 3094–9. ©2010 AACR.

Collaboration


Dive into the Michiel S. van der Heijden's collaboration.

Top Co-Authors

Avatar

Bas W.G. van Rhijn

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Powles

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost L. Boormans

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Horenblas

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter C. Black

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan E. Rosenberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge