Michiko Nemoto
Tokyo University of Agriculture and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michiko Nemoto.
Journal of the Royal Society Interface | 2008
Atsushi Arakaki; Hidekazu Nakazawa; Michiko Nemoto; Tetsushi Mori; Tadashi Matsunaga
Magnetic particles offer high technological potential since they can be conveniently collected with an external magnetic field. Magnetotactic bacteria synthesize bacterial magnetic particles (BacMPs) with well-controlled size and morphology. BacMPs are individually covered with thin organic membrane, which confers high and even dispersion in aqueous solutions compared with artificial magnetites, making them ideal biotechnological materials. Recent molecular studies including genome sequence, mutagenesis, gene expression and proteome analyses indicated a number of genes and proteins which play important roles for BacMP biomineralization. Some of the genes and proteins identified from these studies have allowed us to express functional proteins efficiently onto BacMPs, through genetic engineering, permitting the preservation of the protein activity, leading to a simple preparation of functional protein–magnetic particle complexes. They were applicable to high-sensitivity immunoassay, drug screening and cell separation. Furthermore, fully automated single nucleotide polymorphism discrimination and DNA recovery systems have been developed to use these functionalized BacMPs. The nano-sized fine magnetic particles offer vast potential in new nano-techniques.
The Plant Cell | 2015
Tsuyoshi Tanaka; Yoshiaki Maeda; Alaguraj Veluchamy; Michihiro Tanaka; Heni Abida; Eric Maréchal; Chris Bowler; Masaki Muto; Yoshihiko Sunaga; Masayoshi Tanaka; Tomoko Yoshino; Takeaki Taniguchi; Yorikane Fukuda; Michiko Nemoto; Mitsufumi Matsumoto; Sachiyo Aburatani; Wataru Fujibuchi
F. solaris has an allodiploid genome structure, and activation of lipid accumulation and degradation metabolism pathways at the same time might underlie its simultaneous growth and oil accumulation. Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (β-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.
Journal of Proteome Research | 2013
Daisuke Nojima; Tomoko Yoshino; Yoshiaki Maeda; Masayoshi Tanaka; Michiko Nemoto; Tsuyoshi Tanaka
For biodiesel production from microalgae, it is desirable to understand the entire triacylglycerol (TAG) metabolism. TAG accumulation occurs in oil bodies, and although oil body-associated proteins could play important roles in TAG metabolism, only a few microalgal species have been studied by a comprehensive analysis. Diatoms are microalgae that are promising producers of biodiesel, on which such proteomics analysis has not been conducted to date. Herein, we identified oil body-associated proteins in the oleaginous diatom Fistulifera sp. strain JPCC DA0580. The oil body fraction was separated by cell disruption with beads beating and subsequent ultracentrifugation. Contaminating factors could be removed by comparing proteins from the oil body and the soluble fractions. This novel strategy successfully revealed 15 proteins as oil body-associated protein candidates. Among them, two proteins, which were parts of proteins predicted to have transmembrane domains, were indeed confirmed to specifically localize to the oil bodies in this strain by observation of GFP fusion proteins. One (predicted to be a potassium channel) was also detected from the ER, suggesting that oil bodies might originate from the ER. By utilizing this novel subtraction method, we succeeded in identifying the oil body-associated proteins in the diatom for the first time.
Journal of Virology | 2016
Masaaki Nakashima; Hirotaka Ode; Takashi Kawamura; Shingo Kitamura; Yuriko Naganawa; Hiroaki Awazu; Shinya Tsuzuki; Kazuhiro Matsuoka; Michiko Nemoto; Atsuko Hachiya; Wataru Sugiura; Yoshiyuki Yokomaku; Nobuhisa Watanabe; Yasumasa Iwatani
ABSTRACT The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.
Proteomics | 2009
Tadashi Matsunaga; Michiko Nemoto; Atsushi Arakaki; Masayoshi Tanaka
Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the α‐subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS‐1, which is phylogenetically classified as a member of the δ‐Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB‐1 and M. gryphiswaldense MSR‐1. Three magnetosome‐specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS‐1, AMB‐1, and MSR‐1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen‐like protein and putative iron‐binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS‐1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC‐1 were assigned to a cryptic plasmid of strain RS‐1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet‐shaped crystals in this microorganism.
Bioresource Technology | 2013
Akira Satoh; Kyonosuke Ichii; Mitsufumi Matsumoto; Chihiro Kubota; Michiko Nemoto; Masayoshi Tanaka; Tomoko Yoshino; Tadashi Matsunaga; Tsuyoshi Tanaka
The present study involved the designing of a culture process and the evaluation of productivity of oil products from a highly oleaginous marine diatom, Fistulifera sp. JPCC DA0580, which had been cultured in a commercial-scale factory. The culture facility had a capacity of 48,000 L and held 96 flat-type 500-L photobioreactors (PBRs) equipped with artificial light, which secures a stable, perennial supply of the products. A 10 days culture that had reached a cell density of 6.5 g dry weight L(-1) possessing a cellular oil content of 48% (wt/wt) was found to provide the highest oil yield. On considering a production area of 1500 m(2), annual algal mass and oil productivity is 68.7 and 33.3 t ha(-1) year(-1), respectively. This study thus provides a reproducible prediction of a theoretical maximum oil yield from a highly oleaginous microalgal strain based on industrially practical production area.
Journal of Bioscience and Bioengineering | 2012
Nozomi Shionoiri; Tetsuya Sato; Yoshie Fujimori; Tsuruo Nakayama; Michiko Nemoto; Tadashi Matsunaga; Tsuyoshi Tanaka
This study demonstrated the antiviral properties of copper iodide (CuI) nanoparticles against the non-enveloped virus feline calicivirus (FCV) as a surrogate for human norovirus. The effect of CuI nanoparticles on FCV infectivity to Crandell-Rees feline kidney (CRFK) cells was elucidated. The infectivity of FCV to CRFK cells was greatly reduced by 7 orders of magnitude at 1000μgml(-1) CuI nanoparticles. At the conditions, electron spin resonance (ESR) analysis proved hydroxyl radical production in CuI nanoparticle suspension. Furthermore, amino acid oxidation in the viral capsid protein of FCV was determined by nanoflow liquid chromatography-mass spectrometric (nano LC-MS) analysis. The use of CuI nanoparticles showed extremely high antiviral activity against FCV. The high antiviral property of CuI nanoparticles was attributed to Cu(+), followed by ROS generation and subsequent capsid protein oxidation. CuI nanoparticles could be proposed as useful sources of a continuous supply of Cu(+) ions for efficient virus inactivation. Furthermore, this study brings new insights into toxic actions of copper iodide nanoparticles against viruses.
Phycological Research | 2014
Mitsufumi Matsumoto; Shigeki Mayama; Michiko Nemoto; Yorikane Fukuda; Masaki Muto; Tomoko Yoshino; Tadashi Matsunaga; Tsuyoshi Tanaka
Fistulifera sp. strain JPCC DA0580, a marine pennate diatom, contains extremely high levels of intracellular triglyceride and has been suggested as a promising source of feedstock for biodiesel fuels. JPCC DA0580 was isolated from a mangrove swamp located in Sumiyo Bay below the mouths of the Sumiyo and Yakugachi Rivers in Amami‐Ohshima, Kagoshima, Japan. In this study, the morphology and the 18S rDNA sequence of JPCC DA0580 were compared with those of other Fistulifera strains. JPCC DA0580 possesses morphological characters of the genus Fistulifera, namely lightly silicified frustules, a distinct median costa (raphe sternum), and a wart‐like central pore (fistula). Morphometric analysis revealed that JPCC DA0580 differs from other Fistulifera species by the presence of a valve with coarser striation and coarser areolation. On the basis of 18S rDNA phylogeny, JPCC DA0580 formed a well‐supported clade with other members of the Fistulifera species complex, although the number of nucleotide substitutions was highest in JPCC DA0580. Our results led us to propose the taxonomic name Fistulifera solaris sp. nov. for JPCC DA0580.
Proteomics | 2012
Michiko Nemoto; Qianqian Wang; Dongsheng Li; Songqin Pan; Tadashi Matsunaga; David Kisailus
The biomineralized radular teeth of chitons are known to consist of iron‐based magnetic crystals, associated with the maximum hardness and stiffness of any biomineral. Based on our transmission electron microscopy analysis of partially mineralized teeth, we suggest that the organic matrix within the teeth controls the iron oxide nucleation. Thus, we used Nano‐LC‐MS to perform a proteomic analysis of the organic matrix in radular teeth of the chiton Cryptochiton stelleri in order to identify the proteins involved in the biomineralization process. Since the genome sequence of C. stelleri is not available, cross‐species similarity searching and de novo peptide sequencing were used to screen the proteins. Our results indicate that several proteins were dominant in the mineralized part of the radular teeth, amongst which, myoglobin and a highly acidic peptide were identified as possibly involved in the biomineralization process.
Marine Genomics | 2014
Michiko Nemoto; Yoshiaki Maeda; Masaki Muto; Masayoshi Tanaka; Tomoko Yoshino; Shigeki Mayama; Tsuyoshi Tanaka
Among the proteins localized on the cell wall (frustule) of diatoms (frustule-associated proteins), several proteins tightly associated with the cell wall have been implicated in frustule formation. These proteins include diatom-specific unique serine- and lysine-rich sequences represented by silaffins. Taking advantage of available genome information, we used a recently described bioinformatics approach to screen silaffin-like proteins rich in serine and lysine from the genome of the marine pennate diatom Fistulifera sp. strain JPCC DA0580 and identified 7 proteins. All of the proteins shared a sequence motif called the XGXG domain, which was also confirmed in a silaffin-like protein identified in other diatoms. In vivo localization analysis revealed that one of the identified proteins, G7408, occurs throughout the frustule with a slightly uneven distribution. This novel frustule-associated protein could be a useful tool to elucidate the mechanism of biosilica formation in diatoms and to functionalize this strain for future biotechnological applications.