Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michiko Tajiri is active.

Publication


Featured researches published by Michiko Tajiri.


International Journal of Cancer | 2008

Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers.

Miyako Nakano; Tsutomu Nakagawa; Toshifumi Ito; Takatoshi Kitada; Taizo Hijioka; Akinori Kasahara; Michiko Tajiri; Yoshinao Wada; Naoyuki Taniguchi; Eiji Miyoshi

It was found in our previous studies that the concentration of fucosylated haptoglobin had increased in the sera of patients with pancreatic cancer (PC) compared to those of other types of cancer and normal controls. Haptoglobin, an acute phase protein, has four potential N‐glycosylation sites, although it remains unknown which site is responsible for the change in fucosylated N‐glycans. In the present study, site‐specific N‐glycan structures of haptoglobin in sera obtained from patients with PC or chronic pancreatitis (CP) were analyzed using liquid chromatography‐electrospray ionization mass spectrometry. Mass spectrometry analyses demonstrated that concentrations of total fucosylated di‐, tri‐ and tetra‐branched glycans of haptoglobin increased in the sera of PC patients. Tri‐antennary N‐glycans containing a Lewis X‐type fucose markedly increased at the Asn211 site of haptoglobin N‐glycans. While fucosylated N‐glycans derived from serum haptoglobin of patients with CP slightly increased, di‐fucosylated tetra‐antennary N‐glycans were observed only at this site in PC patients, and were absent in the haptoglobin of normal controls and individuals with CP. Thus, the present study provides evidence that site‐specific analyses of N‐glycans may be useful as novel tumor markers for PC.


Molecular & Cellular Proteomics | 2010

Comparison of Methods for Profiling O-Glycosylation HUMAN PROTEOME ORGANISATION HUMAN DISEASE GLYCOMICS/PROTEOME INITIATIVE MULTI-INSTITUTIONAL STUDY OF IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Catherine E. Hayes; Koichi Kato; Nana Kawasaki; Kay Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Elizabeth Palaima; Matthew B. Renfrow

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Molecular & Cellular Proteomics | 2009

Comparison of Methods for Profiling O-glycosylation: HUPO Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Koichi Kato; Nana Kawasaki; Kay-Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Matthew B. Renfrow; Michiko Tajiri; Naoyuki Taniguchi

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Cell Reports | 2016

Identification of a Post-translational Modification with Ribitol-Phosphate and Its Defect in Muscular Dystrophy

Motoi Kanagawa; Kazuhiro Kobayashi; Michiko Tajiri; Hiroshi Manya; Atsushi Kuga; Yoshiki Yamaguchi; Keiko Akasaka-Manya; Jun-ichi Furukawa; Mamoru Mizuno; Hiroko Kawakami; Yasuro Shinohara; Yoshinao Wada; Tamao Endo; Tatsushi Toda

Glycosylation is an essential post-translational modification that underlies many biological processes and diseases. α-dystroglycan (α-DG) is a receptor for matrix and synaptic proteins that causes muscular dystrophy and lissencephaly upon its abnormal glycosylation (α-dystroglycanopathies). Here we identify the glycan unit ribitol 5-phosphate (Rbo5P), a phosphoric ester of pentose alcohol, in α-DG. Rbo5P forms a tandem repeat and functions as a scaffold for the formation of the ligand-binding moiety. We show that enzyme activities of three major α-dystroglycanopathy-causing proteins are involved in the synthesis of tandem Rbo5P. Isoprenoid synthase domain-containing (ISPD) is cytidine diphosphate ribitol (CDP-Rbo) synthase. Fukutin and fukutin-related protein are sequentially acting Rbo5P transferases that use CDP-Rbo. Consequently, Rbo5P glycosylation is defective in α-dystroglycanopathy models. Supplementation of CDP-Rbo to ISPD-deficient cells restored α-DG glycosylation. These findings establish the molecular basis of mammalian Rbo5P glycosylation and provide insight into pathogenesis and therapeutic strategies in α-DG-associated diseases.


Journal of Cell Biology | 2006

Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α–induced serine307 phosphorylation of IRS-1

Yoshitaka Nakamori; Masahiro Emoto; Naofumi Fukuda; Akihiko Taguchi; Shigeru Okuya; Michiko Tajiri; Makoto Miyagishi; Kazunari Taira; Yoshinao Wada; Yukio Tanizawa

Tumor necrosis factor-α (TNF-α) signaling through the IκB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor κB essential modulator (NEMO)/IKK-γ subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO–IRS-1 interaction, which is essential for TNF-α– induced phosphorylation of Ser307–IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-α–induced Ser307–IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-β–binding domain or silencing NEMO blocked the TNF-α signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK–IRS-1 complex and function in TNF-α–induced insulin resistance.


Journal of Proteome Research | 2010

Quantitation of saccharide compositions of O-glycans by mass spectrometry of glycopeptides and its application to rheumatoid arthritis.

Yoshinao Wada; Michiko Tajiri; Shiro Ohshima

Profiling of oligosaccharide structures is widely utilized for both identification and evaluation of glycobiomarkers, and site-specific profiling of N-linked glycans of glycoproteins is conducted by mass spectrometry of glycopeptides. However, our knowledge of mucin-type O-glycans including site occupancy and profile variance, as well as attachment sites, is quite limited. Saccharide compositions and site-occupancy of O-glycans were calculated from the signal intensity of glycopeptide ions in the mass spectra and tandem mass spectra from electron transfer dissociation. The results for two major plasma glycoproteins, IgA1 and hemopexin, representing clustered and scattered O-glycan attachments, respectively, indicated that the variability in modifications among individuals is so small as to justify rigorous standards enabling reliable detection of disease-related alterations. Indeed, this method revealed a novel abnormality associated with rheumatoid arthritis: a significant decrease in the N-acetylgalactosamine content of IgA1 O-glycans, indicating that the glycosylation abnormality is not limited to hypogalactosylation of IgG N-glycans in chronic inflammatory conditions.


Molecular Biology of the Cell | 2010

Calponin 3 Regulates Actin Cytoskeleton Rearrangement in Trophoblastic Cell Fusion

Yukinao Shibukawa; Natsuko Yamazaki; Keiichi Kumasawa; Etsuko Daimon; Michiko Tajiri; Yuka Okada; Masahito Ikawa; Yoshinao Wada

Calponin 3 (CNN3), an actin binding molecule, negatively regulates trophoblast differentiation and fusion. CNN3 phosphorylation modulates the actin-binding capacity of CNN3 and most probably regulates cytoskeleton remodeling that renders cells capable of undergoing fusion.


Journal of Biological Chemistry | 2009

An N-Glycosylation Site on theβ-Propeller Domain of the Integrin α5 Subunit Plays Key Roles in Both Its Function and Site-specific Modification byβ1,4-N-Acetylglucosaminyltransferase III

Yuya Sato; Tomoya Isaji; Michiko Tajiri; Shumi Yoshida-Yamamoto; Tsuyoshi Yoshinaka; Toshiaki Somehara; Tomohiko Fukuda; Yoshinao Wada; Jianguo Gu

Recently we reported that N-glycans on the β-propeller domain of the integrin α5 subunit (S-3,4,5) are essential for α5β1 heterodimerization, expression, and cell adhesion. Herein to further investigate which N-glycosylation site is the most important for the biological function and regulation, we characterized the S-3,4,5 mutants in detail. We found that site-4 is a key site that can be specifically modified by N-acetylglucosaminyltransferase III (GnT-III). The introduction of bisecting GlcNAc into the S-3,4,5 mutant catalyzed by GnT-III decreased cell adhesion and migration on fibronectin, whereas overexpression of N-acetylglucosaminyltransferase V (GnT-V) promoted cell migration. The phenomenon is similar to previous observations that the functions of the wild-type α5 subunit were positively and negatively regulated by GnT-V and GnT-III, respectively, suggesting that the α5 subunit could be duplicated by the S-3,4,5 mutant. Interestingly GnT-III specifically modified the S-4,5 mutant but not the S-3,5 mutant. This result was confirmed by erythroagglutinating phytohemagglutinin lectin blot analysis. The reduction in cell adhesion was consistently observed in the S-4,5 mutant but not in the S-3,5 mutant cells. Furthermore mutation of site-4 alone resulted in a substantial decrease in erythroagglutinating phytohemagglutinin lectin staining and suppression of cell spread induced by GnT-III compared with that of either the site-3 single mutant or wild-type α5. These results, taken together, strongly suggest that N-glycosylation of site-4 on the α5 subunit is the most important site for its biological functions. To our knowledge, this is the first demonstration that site-specific modification of N-glycans by a glycosyltransferase results in functional regulation.


Journal of Biological Chemistry | 2012

Absence of Post-phosphoryl Modification in Dystroglycanopathy Mouse Models and Wild-type Tissues Expressing Non-laminin Binding Form of α-Dystroglycan

Atsushi Kuga; Motoi Kanagawa; Atsushi Sudo; Yiumo Michael Chan; Michiko Tajiri; Hiroshi Manya; Yamato Kikkawa; Motoyoshi Nomizu; Kazuhiro Kobayashi; Tamao Endo; Qi L. Lu; Yoshinao Wada; Tatsushi Toda

Background: The biosynthetic pathway for the ligand-binding moiety of α-dystroglycan, defects in which cause dystroglycanopathy, remains unclear. Results: The phosphodiester-linked moiety on O-mannose is absent in dystroglycanopathy models and in wild-type lung and testis. Conclusion: Post-phosphoryl modification is a key determinant of the functional expression of α-dystroglycan as a laminin receptor. Significance: This work expands our understanding of the molecular mechanism of a unique post-translational modification. α-Dystroglycan (α-DG) is a membrane-associated glycoprotein that interacts with several extracellular matrix proteins, including laminin and agrin. Aberrant glycosylation of α-DG disrupts its interaction with ligands and causes a certain type of muscular dystrophy commonly referred to as dystroglycanopathy. It has been reported that a unique O-mannosyl tetrasaccharide (Neu5Ac-α2,3-Gal-β1,4-GlcNAc-β1,2-Man) and a phosphodiester-linked modification on O-mannose play important roles in the laminin binding activity of α-DG. In this study, we use several dystroglycanopathy mouse models to demonstrate that, in addition to fukutin and LARGE, FKRP (fukutin-related protein) is also involved in the post-phosphoryl modification of O-mannose on α-DG. Furthermore, we have found that the glycosylation status of α-DG in lung and testis is minimally affected by defects in fukutin, LARGE, or FKRP. α-DG prepared from wild-type lung- or testis-derived cells lacks the post-phosphoryl moiety and shows little laminin-binding activity. These results show that FKRP is involved in post-phosphoryl modification rather than in O-mannosyl tetrasaccharide synthesis. Our data also demonstrate that post-phosphoryl modification not only plays critical roles in the pathogenesis of dystroglycanopathy but also is a key determinant of α-DG functional expression as a laminin receptor in normal tissues and cells.


Oncogene | 2015

Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling

Yoshihiro Hasegawa; Motoko Takahashi; Shigeru Ariki; D Asakawa; Michiko Tajiri; Yoshinao Wada; Yoshiki Yamaguchi; Chiaki Nishitani; Rina Takamiya; Atsushi Saito; Yasuaki Uehara; Jiro Hashimoto; Yuichiro Kurimura; Hiroki Takahashi; Yoshio Kuroki

Surfactant protein D (SP-D) is a member of the collectin family that has an important role in maintaining pulmonary homeostasis. In this study, we demonstrated that SP-D inhibited the proliferation, migration and invasion of A549 human lung adenocarcinoma cells. We found that SP-D suppressed epidermal growth factor (EGF) signaling in A549 cells, H441 human lung adenocarcinoma cells and human EGF receptor (EGFR) stable expression CHO-K1 cells. A binding study using 125I-EGF demonstrated that SP-D downregulated the binding of EGF to EGFR. A ligand blot indicated that SP-D bound to EGFR, and a lectin blot suggested that EGFR in A549 cells had both high-mannose type and complex type N-glycans. We purified the recombinant extracellular domain of EGFR (soluble EGFR=soluble EGFR (sEGFR)), and demonstrated that SP-D directly bound to sEGFR in a Ca2+-dependent manner. The binding of SP-D to sEGFR was suppressed by EDTA, mannose or N-glycopeptidase F treatment. Mass spectrometric analysis indicated that N-glycans in domain III of EGFR were of a high-mannose type. These data suggest that SP-D reduces EGF binding to EGFR through the interaction between the carbohydrate recognition domain of SP-D and N-glycans of EGFR, and downregulates EGF signaling. Our finding suggests the novel type of regulation system of EGF signaling involving lectin-to-carbohydrate interaction and downregulation of ligand binding.

Collaboration


Dive into the Michiko Tajiri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Manya

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge