Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michito Hamada is active.

Publication


Featured researches published by Michito Hamada.


Molecular and Cellular Biology | 2005

MafA Is a Key Regulator of Glucose-Stimulated Insulin Secretion

Chuan Zhang; Takashi Moriguchi; Miwako Kajihara; Ritsuko Esaki; Ayako Harada; Homare Shimohata; Hisashi Oishi; Michito Hamada; Naoki Morito; Kazuteru Hasegawa; Takashi Kudo; James Douglas Engel; Masayuki Yamamoto; Satoru Takahashi

ABSTRACT MafA is a transcription factor that binds to the promoter in the insulin gene and has been postulated to regulate insulin transcription in response to serum glucose levels, but there is no current in vivo evidence to support this hypothesis. To analyze the role of MafA in insulin transcription and glucose homeostasis in vivo, we generated MafA-deficient mice. Here we report that MafA mutant mice display intolerance to glucose and develop diabetes mellitus. Detailed analyses revealed that glucose-, arginine-, or KCl-stimulated insulin secretion from pancreatic β cells is severely impaired, although insulin content per se is not significantly affected. MafA-deficient mice also display age-dependent pancreatic islet abnormalities. Further analysis revealed that insulin 1, insulin 2, Pdx1, Beta2, and Glut-2 transcripts are diminished in MafA-deficient mice. These results show that MafA is a key regulator of glucose-stimulated insulin secretion in vivo.


Molecular and Cellular Biology | 2006

MafB Is Essential for Renal Development and F4/80 Expression in Macrophages

Takashi Moriguchi; Michito Hamada; Naoki Morito; Tsumoru Terunuma; Kazuteru Hasegawa; Chuan Zhang; Tomomasa Yokomizo; Ritsuko Esaki; Etsushi Kuroda; Keigyou Yoh; Takashi Kudo; Michio Nagata; David R. Greaves; James Douglas Engel; Masayuki Yamamoto; Satoru Takahashi

ABSTRACT MafB is a member of the large Maf family of transcription factors that share similar basic region/leucine zipper DNA binding motifs and N-terminal activation domains. Although it is well known that MafB is specifically expressed in glomerular epithelial cells (podocytes) and macrophages, characterization of the null mutant phenotype in these tissues has not been previously reported. To investigate suspected MafB functions in the kidney and in macrophages, we generated mafB/green fluorescent protein (GFP) knock-in null mutant mice. mafB homozygous mutants displayed renal dysgenesis with abnormal podocyte differentiation as well as tubular apoptosis. Interestingly, these kidney phenotypes were associated with diminished expression of several kidney disease-related genes. In hematopoietic cells, GFP fluorescence was observed in both Mac-1- and F4/80-expressing macrophages in the fetal liver. Interestingly, F4/80 expression in macrophages was suppressed in the homozygous mutant, although development of the Mac-1-positive macrophage population was unaffected. In primary cultures of fetal liver hematopoietic cells, MafB deficiency was found to dramatically suppress F4/80 expression in nonadherent macrophages, whereas the Mac-1-positive macrophage population developed normally. These results demonstrate that MafB is essential for podocyte differentiation, renal tubule survival, and F4/80 maturation in a distinct subpopulation of nonadherent mature macrophages.


Journal of Clinical Investigation | 2010

Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

Keizo Nishikawa; Tomoki Nakashima; Shu Takeda; Masashi Isogai; Michito Hamada; Ayako Kimura; Tatsuhiko Kodama; Akira Yamaguchi; Michael John Owen; Satoru Takahashi; Hiroshi Takayanagi

Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf(-/-) mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf(+/-) mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases.


Development | 2006

Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation

Takashi Moriguchi; Nakano Takako; Michito Hamada; Atsuko Maeda; Yuki Fujioka; Takashi Kuroha; Reuben E. Huber; Susan L. Hasegawa; Arvind Rao; Masayuki Yamamoto; Satoru Takahashi; Kim Chew Lim; James Douglas Engel

Gata3 mutant mice expire of noradrenergic deficiency by embryonic day (E) 11 and can be rescued pharmacologically or, as shown here, by restoring Gata3 function specifically in sympathoadrenal (SA) lineages using the human DBH promoter to direct Gata3 transgenic expression. In Gata3-null embryos, there was significant impairment of SA differentiation and increased apoptosis in adrenal chromaffin cells and sympathetic neurons. Additionally, mRNA analyses of purified chromaffin cells from Gata3 mutants show that levels of Mash1, Hand2 and Phox2b (postulated upstream regulators of Gata3) as well as terminally differentiated SA lineage products (tyrosine hydroxylase, Th, and dopamineβ -hydroxylase, Dbh) are markedly altered. However, SA lineage-specific restoration of Gata3 function in the Gata3 mutant background rescues the expression phenotypes of the downstream, as well as the putative upstream genes. These data not only underscore the hypothesis that Gata3 is essential for the differentiation and survival of SA cells, but also suggest that their differentiation is controlled by mutually reinforcing feedback transcriptional interactions between Gata3, Mash1, Hand2 and Phox2b in the SA lineage.


Development | 2011

Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouse

Hiroyuki Ishitobi; Asami Wakamatsu; Fang Liu; Takuya Azami; Michito Hamada; Ken Matsumoto; Hiroshi Kataoka; Makoto Kobayashi; Kyunghee Choi; Shin-Ichi Nishikawa; Satoru Takahashi; Masatsugu Ema

The mouse Flk1 gene is expressed in various mesodermal progenitor cells of developing embryos. Recent studies have shown that Flk1 expression marks multipotent mesodermal progenitors, giving rise to various hemato-cardiovascular cell lineages during development. Flk1 expression also marks hemato-cardiovascular cell lineages in differentiating embryonic stem (ES) cells, which may be used in transplantation decisions to treat cardiovascular diseases. Despite its developmental and clinical importance in cardiovascular tissues, the transcriptional regulatory system of Flk1 has remained unclear. Here, we report a novel enhancer of the mouse Flk1 gene directing early mesodermal expression during development as well as ES differentiation. The enhancer enriches various mesodermal progenitors, such as primitive erythropoietic progenitors, hemangioblast (BL-CFC) and cardiovascular progenitors (CV-CFC). The enhancer is activated by Bmp, Wnt and Fgf, and it contains Gata-, Cdx-, Tcf/Lef-, ER71/Etv2- and Fox-binding sites, some of which are bound specifically by each of these transcription factors. As these transcription factors are known to act under the control of the Bmp, Wnt and Fgf families, early Flk1 expression may be induced by cooperative interactions between Gata, Tcf/Lef, Cdx and ER71/Etv2 under the control of Bmp, Wnt and Fgf signaling. The enhancer is required for early Flk1 expression and for hemangioblast development during ES differentiation.


Developmental Dynamics | 2009

Transcription factor GATA-3 is essential for lens development

Atsuko Maeda; Takashi Moriguchi; Michito Hamada; Manabu Kusakabe; Yuki Fujioka; Takako Nakano; Keigyou Yoh; Kim Chew Lim; James Douglas Engel; Satoru Takahashi

During vertebrate lens development, the anterior, ectoderm‐derived lens vesicle cells differentiate into a monolayer of epithelial cells that retain proliferative potential. Subsequently, they exit the cell cycle and give rise to posterior lens fiber cells that form the lens body. In the present study, we demonstrate that the transcription factor GATA‐3 is expressed in the posterior lens fiber cells during embryogenesis, and that GATA‐3 deficiency impairs lens development. Interestingly, expression of E‐cadherin, a premature lens vesicle marker, is abnormally prolonged in the posterior region of Gata3 homozygous mutant lenses. Furthermore, expression of γ‐crystallin, a differentiation marker for fiber cells, is reduced. This suppressed differentiation is accompanied by an abnormal cellular proliferation, as well as with diminished levels of the cell‐cycle inhibitors Cdkn1b/p27 and Cdkn1c/p57 and increased Ccnd2/cyclin D2 abundance. Thus, these observations suggest that GATA‐3 is essential for lens cells differentiation and proper cell cycle control. Developmental Dynamics 238:2280–2291, 2009.


Blood | 2011

c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver

Manabu Kusakabe; Kazuteru Hasegawa; Michito Hamada; Megumi Nakamura; Takayuki Ohsumi; Hirona Suzuki; Tran Thi Nhu Mai; Takashi Kudo; Kazuhiko Uchida; Haruhiko Ninomiya; Shigeru Chiba; Satoru Takahashi

c-Maf is one of the large Maf (musculoaponeurotic fibrosarcoma) transcription factors that belong to the activated protein-1 super family of basic leucine zipper proteins. Despite its overexpression in hematologic malignancies, the physiologic roles c-Maf plays in normal hematopoiesis have been largely unexplored. On a C57BL/6J background, c-Maf(-/-) embryos succumbed from severe erythropenia between embryonic day (E) 15 and E18. Flow cytometric analysis of fetal liver cells showed that the mature erythroid compartments were significantly reduced in c-Maf(-/-) embryos compared with c-Maf(+/+) littermates. Interestingly, the CFU assay indicated there was no significant difference between c-Maf(+/+) and c-Maf(-/-) fetal liver cells in erythroid colony counts. This result indicated that impaired definitive erythropoiesis in c-Maf(-/-) embryos is because of a non-cell-autonomous effect, suggesting a defective erythropoietic microenvironment in the fetal liver. As expected, the number of erythroblasts surrounding the macrophages in erythroblastic islands was significantly reduced in c-Maf(-/-) embryos. Moreover, decreased expression of VCAM-1 was observed in c-Maf(-/-) fetal liver macrophages. In conclusion, these results strongly suggest that c-Maf is crucial for definitive erythropoiesis in fetal liver, playing an important role in macrophages that constitute erythroblastic islands.


Experimental Animals | 2014

In Vivo image Analysis Using iRFP Transgenic Mice

Mai Thi Nhu Tran; Junko Tanaka; Michito Hamada; Yuka Sugiyama; Shota Sakaguchi; Megumi Nakamura; Satoru Takahashi; Yoshihiro Miwa

Fluorescent proteins with light wavelengths within the optical window are one of the improvements in in vivo imaging techniques. Near-infrared (NIR) fluorescent protein (iRFP) is a stable, nontoxic protein that emits fluorescence within the NIR optical window without the addition of exogenous substrate. However, studies utilizing an in vivo iRFP model have not yet been published. Here, we report the generation of transgenic iRFP mice with ubiquitous NIR fluorescence expression. iRFP expression was observed in approximately 50% of the offspring from a matings between iRFP transgenic and WT mice. The serum and blood cell indices and body weights of iRFP mice were similar to those of WT mice. Red fluorescence with an excitation wavelength of 690 nm and an emission wavelength of 713 nm was detected in both newborn and adult iRFP mice. We also detected fluorescence emission in whole organs of the iRFP mice, including the brain, heart, liver, kidney, spleen, lung, pancreas, bone, testis, thymus, and adipose tissue. Therefore, iRFP transgenic mice may therefore be a useful tool for various types of in vivo imaging.


Blood | 2013

C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes

Takashi Kudo; Takashi Sato; Kozue Hagiwara; Yukinori Kozuma; Takashi Yamaguchi; Yuzuru Ikehara; Michito Hamada; Ken Matsumoto; Masatsugu Ema; Soichiro Murata; Nobuhiro Ohkohchi; Hisashi Narimatsu; Satoru Takahashi

C1galt1 is essential for synthesis of the core 1 structure of mucin-type O-glycans. To clarify the physiological role of O-glycans in adult hematopoiesis, we exploited the interferon-inducible Mx1-Cre transgene to conditionally ablate the C1galt(flox) allele (Mx1-C1). Mx1-C1 mice exhibit severe thrombocytopenia, giant platelets, and prolonged bleeding times. Both the number and DNA ploidy of megakaryocytes in Mx1-C1 bone marrow were similar to those in wild-type (WT) mice. However, there were few proplatelets in Mx1-C1 primary megakaryocytes. Conversely, bone marrow transplanted from Mx1-C1 to WT and splenectomized Mx1-C1 mice gave rise to observations similar to those described above. The expression of GPIbα messenger RNA was unchanged in Mx1-C1 bone marrow, whereas flow cytometric and western blot analyses using megakaryocytes and platelets revealed that the expression of GPIbα protein was significantly reduced in Mx1-C1 mice. Moreover, circulating Mx1-C1 platelets exhibited an increase in the number of microtubule coils, despite normal levels of α- and β-tubulin. Our observations suggest that O-glycan is required for terminal megakaryocyte differentiation and platelet production and that the decrease in GPIbα in cells lacking O-glycan might be caused by increased proteolysis.


Cancer Research | 2011

A Novel Transgenic Mouse Model of the Human Multiple Myeloma Chromosomal Translocation t(14;16)(q32;q23)

Naoki Morito; Keigyou Yoh; Atsuko Maeda; Takako Nakano; Akiko Fujita; Manabu Kusakabe; Michito Hamada; Takashi Kudo; Kunihiro Yamagata; Satoru Takahashi

Multiple myeloma (MM) is a currently incurable neoplasm of terminally differentiated B cells. The translocation and/or overexpression of c-MAF have been observed in human MM. Although c-MAF might function as an oncogene in human MM, there has been no report thus far describing the direct induction of MM by c-MAF overexpression in vivo. In this study, we have generated transgenic (TG) mice that express c-Maf specifically in the B-cell compartment. Aged c-Maf TG mice developed B-cell lymphomas with some clinical features that resembled those of MM, namely, plasma cell expansion and hyperglobulinemia. Quantitative RT-PCR analysis demonstrated that Ccnd2 and Itgb7, which are known target genes of c-Maf, were highly expressed in the lymphoma cells. This novel TG mouse model of the human MM t(14;16)(q32;q23) chromosomal translocation should serve to provide new insight into the role of c-MAF in tumorigenesis.

Collaboration


Dive into the Michito Hamada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge