Michiyo Goto
Yamagata University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michiyo Goto.
Journal of Insect Physiology | 2001
Michiyo Goto; Yutaka Sekine; Hitoshi Outa; Mikio Hujikura; Koichi Suzuki
To elucidate the relationship between diapause and cold hardiness in the oriental corn borer, Ostrinia furnacalis, the levels of various substances, cold hardiness and respiration were measured in diapausing and post-diapausing overwintering larvae. Under field conditions, diapause terminated between November and January, although O(2) consumption, measured at 20 degrees C in the laboratory, remained at a high level from October to January. Glycerol content was low during October and November but greatly increased during December and January. Serine was the most abundant of the free amino acids, and its concentrations were especially high during October and November, while the concentration of alanine increased in December and January. Under laboratory conditions, glycerol levels were low in diapausing larvae, and in post-diapausing larvae that were acclimated at either high temperatures or under anaerobic conditions, while they were high in post-diapausing larvae kept under aerobic, low temperature conditions. The survival rate (cold hardiness) was strongly correlated with glycerol content but not with serine or alanine levels. These results suggest that O. furnacalis has a highly developed cold hardiness mechanism in which termination of diapause enables the larvae to increase glycerol levels when the temperature decreases.
Journal of Insect Physiology | 2001
Yi-Ping Li; Michiyo Goto; S Ito; Y Sato; K Sasaki; N Goto
The fall webworm Hyphantria cunea Drury, which was accidentally introduced to Japan in 1945, overwinters on the ground in pupal diapause. Diapause termination, as indicated by the respiration rate and the period required for adult emergence, began in March and ended in April. Cold hardiness (the ability to survive exposure to -15 degrees C) decreased linearly with diapause development from November to the following April under field conditions. Cold hardiness of diapause pupae (DP) decreased as the acclimation temperature decreased from 15 to -10 degrees C, whereas cold hardiness of non-diapause pupae (NDP) remained high as the acclimation temperature decreased from 5 to -5 degrees C. However, H. cunea in Japan can survive exposure to -5 degrees C for two weeks, whether it is in a diapause or non-diapause state. Trehalose was the main sugar detected in the body, but its level was less than 0.8%. Trehalose levels increased in field-collected pupae from January to March. DP accumulated less trehalose than NDP, as the acclimation temperature was decreased from 5 to -5 degrees C. The alanine content in field-collected pupae increased from November to February. Both diapause and low temperature caused an accumulation of alanine. These results suggest that under field conditions, overwintering pupae of H. cunea in Japan do not accumulate high levels of sugars and polyols and do not develop a high level of cold hardiness. Furthermore, DP do not accumulate high levels of sugars and polyols and their ability to survive exposure to -15 degrees C is not greater than that of NDP. The physiological and biochemical bases of diapause in H. cunea from Japan are discussed.
Journal of Insect Physiology | 1997
Michiyo Goto; Mitsuhiro Fujii; Koichi Suzuki; Masato Sakai
Amounts of several metabolites were measured in overwintering larvae of Enosima leucotaeniella acclimated to temperatures between -5 and 15 degrees C for 30days. In the diapausing stage, cold hardiness, as shown by the survival rate, began rising below 15 degrees C. Glycogen content decreased as the temperature decreased from 10 to 0 degrees C. Trehalose content rose as the temperature decreased from 15 to 5 degrees C, but remained unchanged as the temperature decreased from 5 and 0 degrees C. Twenty-eight free amino acids were detected in the haemolymph; levels of proline, glutamine and glutamic acid increased at high temperatures, but alanine increased at low temperatures, especially as temperature decreased from 5 to 0 degrees C. Lipid content was unchanged by the different acclimation temperatures. The effects of temperature, diapause and aerobic conditions on the levels of carbohydrates and amino acids in overwintering larvae were analyzed. Alanine levels rose at low temperature only when the larvae were in the diapausing stage. The level of trehalose rose at low temperature in both the diapausing and post-diapausing stages, although it was higher at aerobic conditions in the post-diapausing stage. These results suggest that efficient trehalose synthesis occurs under the combination of low temperature and aerobic conditions of the post-diapausing stage, so that cold hardiness in overwintering E. leucotaeniella larvae may rise to a high level in winter.
Journal of Insect Physiology | 2001
Michiyo Goto; Yi-Ping Li; Shirou Kayaba; Shinichi Outani; Koichi Suzuki
Cold hardiness and biochemical changes were investigated in winter and summer pupae of the cabbage armyworm Mamestra brassicae at the diapause and post-diapause stages under temperature acclimation. Diapause pupae were successively acclimated to 25, 20 and then 10 degrees C (warm-acclimated group). Pupae at the diapause and post-diapause stages were successively acclimated to 5, 0, -5 and then -10 degrees C (cold-acclimated groups). Supercooling point values in winter and summer pupae remained constant regardless of the diapause stages and acclimated temperatures. Warm-acclimated pupae at the diapause stage did not survive the subzero temperature exposure, whereas, cold-acclimated pupae achieved cold hardiness to various degrees. Winter pupae were more cold hardy than summer pupae, and pupae at the post-diapause stage were more cold hardy than those at the diapause stage. Trehalose contents in winter pupae rose under cold acclimation. Summer pupae accumulated far lower trehalose contents than winter pupae, with the maximal level occurring in winter pupae at the post-diapause stage. Glycogen content remained at a high level in diapause pupae after warm acclimation, whereas it decreased after cold acclimation. Alanine, the main free amino acid in haemolymph after cold acclimation, increased at lower temperatures in both diapause and post-diapause pupae, but the increase was greater in the diapause pupae. These results suggest that cold hardiness is more fully developed in winter pupae than in summer pupae, and cold acclimation provides higher cold hardiness in winter pupae at the post-diapause stage than at the diapause stage.
Journal of Insect Physiology | 2002
Yi-Ping Li; Michiyo Goto; Lei Ding; Hisaaki Tsumuki
Overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis, enter diapause in early September and terminate diapause at the end of October. Cold acclimation at 0 degrees C did not influence glycerol, trehalose or glycogen content in larvae collected on 22 September. Acclimation at 0 degrees C increased the glycerol content and reduced the glycogen content significantly in larvae collected on 2 October and 22 November compared with acclimation at 15 degrees C. These results indicate that overwintering larvae at different phases of diapause development respond differently to the low temperature stimulus for glycerol synthesis. Thus, we evaluated the metabolic rearrangements associated with glycerol synthesis during diapause development and after temperature acclimation. Larvae collected on 2 October were acclimated at 15 degrees C for 15 and 60 days. Some of those acclimated at 15 degrees C were then moved to 0 degrees C for 15 days. The larvae acclimated at 15 degrees C for 15 days were in deep diapause and accumulated little glycerol, while larvae acclimated at 15 degrees C for 60 days were nearly ready to emerge from diapause and accumulated glycerol at 155.5 &mgr;mol/g. When larvae acclimated to 15 degrees C for 15 days were transferred to 0 degrees C, glycerol accumulation was stimulated to the same extent (ca 140 &mgr;mol/g) as it was in larvae that were acclimated to 15 degrees C for 60 days and then transferred to 0 degrees C. These results indicate that low temperature has a cumulative effect on glycerol production in larvae at different phases of diapause development. Glycerol accumulation was accomplished by activation of glycogen phosphorylase and inhibition of fructose-1,6-bisphosphatase, and activation of enzymes associated with glycerol synthesis, mainly glyceraldehyde-3-phosphatase and polyol dehydrogenase with glyceraldehyde activity.
Physiological Entomology | 2002
Yi-Ping Li; Sumiko Oguchi; Michiyo Goto
Abstract The apple leaf miner Phyllonorycter ringoniella (Matsumura) (Lepidoptera: Gracillariidae) overwinters as a diapausing pupa. The diapause rate reaches 100% in early October. Diapause intensity decreases gradually from early October and diapause terminates in early February. The fresh body weight of diapausing pupae is 1.6 times that of non‐diapausing pupae. The main cryoprotectant in P. ringoniella pupae is trehalose. Three stages are distinguishable as indicated by the correlations between diapause intensity, levels of cold hardiness and the trehalose content: diapause induction occurred in October, diapause development from November to December, and post‐diapause quiescence from January to April. During diapause induction, the pupae accumulate low levels of trehalose and do not survive exposure to −15 °C. During diapause development, the pupae gradually accumulate more trehalose and show some ability to survive exposure to −15 °C, but not to −20 °C. During post‐diapause quiescence, the pupae accumulate relatively more trehalose and cold hardiness fully develops, but decreases quickly in April. The trehalose content in pupae sampled in December is unaffected by acclimation temperatures in the range 0–30 °C, but decreases in pupae sampled in March after acclimation at temperatures from 5 to 15 °C. These results suggest that overwintering pupae of P. ringoniella have the ability to accumulate trehalose and develop a high level of cold hardiness during diapause development.
Insect Science | 2001
Li Yi-ping; Gong He; Ho-Yong Park; Michiyo Goto
Abstract The responses of overwintering larvae of the pine needle gall midge Thecodiplosis japonensis Uchida et Inouye to rapid cold hardening and cold acclimation were studied. A rapid cold hardening response is found in the 3rd instar larvae of T. japonensis. When overwintering larvae are transferred directly from 27°C to ‐ 15°C for 3 h, there is only 17.9% survival, whereas exposure to 4°C for 2 h prior to transfer to ‐ 15°C increases survival to 40.0%. The acquired cold tolerance is transient and is rapidly lost (after 15 min at 27°C). Rapid cold hardening is more effective in maintaining larval survival than cold acclimation. Different mechanisms are suggested to regulate the insects cold hardiness under rapid cold hardening and cold acclimation.
Journal of Insect Physiology | 2007
Shinichi Ishiguro; Yiping Li; Kazuto Nakano; Hisaaki Tsumuki; Michiyo Goto
Applied Entomology and Zoology | 2001
Michiyo Goto; Yi-Ping Li; Takashi Honma
Archives of Insect Biochemistry and Physiology | 2002
Yi-Ping Li; Lei Ding; Michiyo Goto