Michiyoshi Kouno
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michiyoshi Kouno.
Journal of Experimental Medicine | 2004
Hirohiko Shibayama; Emi Takai; Itaru Matsumura; Michiyoshi Kouno; Eiichi Morii; Yukihiko Kitamura; Junji Takeda; Yuzuru Kanakura
Many growth factors and cytokines prevent apoptosis. Using an expression cloning method, we identified a novel antiapoptotic molecule named Anamorsin, which does not show any homology to known apoptosis regulatory molecules such as Bcl-2 family, caspase family, or signal transduction molecules. The expression of Anamorsin was completely dependent on stimulation with growth factors such as interleukin 3, stem cell factor, and thrombopoietin in factor-dependent hematopoietic cell lines, and forced expression of Anamorsin conferred resistance to apoptosis caused by growth factor deprivation in vitro. Furthermore, Anamorsin was found to act as an antiapoptotic molecule in vivo because Anamorsin−/− mice die in late gestation due to defective definitive hematopoiesis in the fetal liver (FL). Although the number of hematopoietic stem/progenitor cells in the FL did not decrease in these mice, myeloid, and particularly erythroid colony formation in response to cytokines, was severely disrupted. Also, Anamorsin−/− erythroid cells initiated apoptosis during terminal maturation. As for the mechanism of Anamorsin-mediated cell survival, a microarray analysis revealed that the expression of Bcl-xL and Jak2 was severely impaired in the FL of Anamorsin−/− mice. Thus, Anamorsin is considered to be a necessary molecule for hematopoiesis that mediates antiapoptotic effects of various cytokines.
Nature | 2004
Kosuke Yusa; Kyoji Horie; Gen Kondoh; Michiyoshi Kouno; Yusuke Maeda; Taroh Kinoshita; Junji Takeda
The chief limitation of phenotype-based genetic screening in mammalian systems is the diploid nature of the genome. Cells deficient in the Blooms syndrome gene (Blm) show an increased rate of loss of heterozygosity. Here we have used a tetracycline-regulated Blm allele (Blmtet) to introduce bi-allelic mutations across the genome in mouse embryonic stem (ES) cells. Transient loss of Blm expression induces homologous recombination not only between sister chromatids but also between homologous chromosomes. We considered that the phenotype of ES cells bearing bi-allelic mutations would be maintained after withdrawal of the tetracycline analogue doxycycline. Indeed, a combination of N-ethyl-N-nitrosourea mutagenesis and transient loss of Blm expression enabled us to generate an ES cell library with genome-wide bi-allelic mutations. The library was evaluated by screening for mutants of glycosylphosphatidylinositol-anchor biosynthesis, which involves at least 23 genes distributed throughout the genome. Mutants derived from 12 different genes were obtained and two unknown mutants were simultaneously isolated. Our results indicate that phenotype-based genetic screening with Blmtet is very efficient and raises possibilities for identifying gene functions in ES cells.
Molecular and Cellular Biology | 2006
Kojiro Yae; Vincent W. Keng; Masato Koike; Kosuke Yusa; Michiyoshi Kouno; Yoshihiro Uno; Gen Kondoh; Takahiro Gotow; Yasuo Uchiyama; Kyoji Horie; Junji Takeda
ABSTRACT The Sleeping Beauty (SB) transposon system has generated many transposon-insertional mutant mouse lines, some of which have resulted in embryonic lethality when bred to homozygosity. Here we report one such insertion mapped to the mouse actin-related protein complex subunit 3 gene (Arpc3). Arpc3 is a component of the Arp2/3 complex, which plays a major role in actin nucleation with Y-shaped branching from the mother actin filament in response to migration signaling. Arpc3 transposon-inserted mutants developed only to the blastocyst stage. In vitro blastocyst culture of Arpc3 mutants exhibited severe spreading impairment of trophoblasts. This phenotype was also observed in compound heterozygotes generated using conventional gene-targeted and transposon-inserted alleles. Arpc3-deficient mutants were shown to lack actin-rich structures in the spreading trophoblast. Electron microscopic analysis demonstrated the lack of mesh-like structures at the cell periphery, suggesting a role of Arpc3 in Y-shaped branching formation. These data indicate the importance of Arpc3 in the Arp2/3 complex for trophoblast outgrowth and suggest that Arpc3 may be indispensable for implantation.
Biochemical and Biophysical Research Communications | 2010
Andreas Marg; Hannelore Haase; Tanja Neumann; Michiyoshi Kouno; Ingo Morano
The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubule system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1⁻/⁻ fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.
Journal of Vascular Research | 2017
Nadine Haase; Constantin Rüder; Hannelore Haase; Stefanie Kamann; Michiyoshi Kouno; Ingo Morano; Ralf Dechend; Dietlind Zohlnhöfer; Tobias Haase
Aim: Vascular remodeling following injury substantially accounts for restenosis and adverse clinical outcomes. In this study, we investigated the role of the giant scaffold protein Ahnak1 in vascular healing after endothelial denudation of the murine femoral artery. Methods: The spatiotemporal expression pattern of Ahnak1 and Ahnak2 was examined using specific antibodies and real-time quantitative PCR. Following wire-mediated endothelial injury of Ahnak1-deficient mice and wild-type (WT) littermates, the processes of vascular healing were analyzed. Results: Ahnak1 and Ahnak2 showed a mutually exclusive vascular expression pattern, with Ahnak1 being expressed in the endothelium and Ahnak2 in the medial cells in naïve WT arteries. After injury, a marked increase of Ahnak1- and Ahnak2-positive cells at the lesion site became evident. Both proteins showed a strong upregulation in neointimal cells 14 days after injury. Ahnak1-deficient mice showed delayed vascular healing and dramatically impaired re-endothelialization that resulted in prolonged adverse vascular remodeling, when compared to the WT littermates. Conclusion: The large scaffold and adaptor proteins Ahnak1 and Ahnak2 exhibit differential expression patterns and functions in naïve and injured arteries. Ahnak1 plays a nonredundant protective role in vascular healing.
Journal of Investigative Dermatology | 2013
Michiyoshi Kouno; Chenyan Lin; Norman M. Schechter; Don L. Siegel; Xiaoping Yang; John T. Seykora; John R. Stanley
We determined the feasibility of using an anti-desmoglein (Dsg) monoclonal antibody, Px44, to deliver a biologically active protein to keratinocytes. Recombinantly produced Px44-green fluorescent protein (GFP) injected into mice and skin organ culture delivered GFP to the cell surface of keratinocytes. We replaced GFP with tumor necrosis factor -related apoptosis-inducing ligand (TRAIL) to produce Px44TRAIL. We chose TRAIL as a biologic model because it inhibits activated lymphocytes and causes apoptosis of hyperproliferative keratinocytes, features of various skin diseases. Px44TRAIL formed a trimer, the biologically active form of TRAIL. Standard assays of TRAIL activity showed that Px44TRAIL caused apoptosis of Jurkat cells and inhibited interferon-γ production by activated CD4+ T cells. Enzyme-linked immunoassay with Px44TRAIL showed delivery of TRAIL to Dsg. Immunofluorescence with Px44TRAIL incubated on skin sections and cultured keratinocytes or injected into mouse skin, human organ culture or human xenografts detected TRAIL on keratinocytes. Px44TRAIL caused apoptosis of hyperproliferative, but not differentiating, cultured keratinocytes through binding to Dsg3. Foldon, a small trimerization domain, cloned into Px44TRAIL maintained its stability and biological activity at 37° for at least 48 hr. These data suggest that such targeted therapy is feasible and may be useful for hyperproliferative and inflamed skin diseases.
Journal of Investigative Dermatology | 2013
Michiyoshi Kouno; Chenyan Lin; Norman M. Schechter; Don L. Siegel; Xiaoping Yang; John T. Seykora; John R. Stanley
We determined the feasibility of using an anti-desmoglein (Dsg) monoclonal antibody, Px44, to deliver a biologically active protein to keratinocytes. Recombinantly produced Px44-green fluorescent protein (GFP) injected into mice and skin organ culture delivered GFP to the cell surface of keratinocytes. We replaced GFP with tumor necrosis factor -related apoptosis-inducing ligand (TRAIL) to produce Px44TRAIL. We chose TRAIL as a biologic model because it inhibits activated lymphocytes and causes apoptosis of hyperproliferative keratinocytes, features of various skin diseases. Px44TRAIL formed a trimer, the biologically active form of TRAIL. Standard assays of TRAIL activity showed that Px44TRAIL caused apoptosis of Jurkat cells and inhibited interferon-γ production by activated CD4+ T cells. Enzyme-linked immunoassay with Px44TRAIL showed delivery of TRAIL to Dsg. Immunofluorescence with Px44TRAIL incubated on skin sections and cultured keratinocytes or injected into mouse skin, human organ culture or human xenografts detected TRAIL on keratinocytes. Px44TRAIL caused apoptosis of hyperproliferative, but not differentiating, cultured keratinocytes through binding to Dsg3. Foldon, a small trimerization domain, cloned into Px44TRAIL maintained its stability and biological activity at 37° for at least 48 hr. These data suggest that such targeted therapy is feasible and may be useful for hyperproliferative and inflamed skin diseases.
Journal of Investigative Dermatology | 2004
Michiyoshi Kouno; Gen Kondoh; Kyoji Horie; Nobuyasu Komazawa; Norito Ishii; Yoshie Takahashi; Junji Takeda; Takashi Hashimoto
Pflügers Archiv: European Journal of Physiology | 2010
Julio L. Alvarez; Daria Petzhold; Ines Pankonien; Joachim Behlke; Michiyoshi Kouno; Guy Vassort; Ingo Morano; Hannelore Haase
Gene | 2006
Tomoko Hayakawa; Kosuke Yusa; Michiyoshi Kouno; Junji Takeda; Kyoji Horie