Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michl Binderbauer is active.

Publication


Featured researches published by Michl Binderbauer.


Physics of Plasmas | 2015

A high performance field-reversed configurationa)

Michl Binderbauer; T. Tajima; Loren C. Steinhauer; E. Garate; Michel Tuszewski; L. Schmitz; H. Y. Guo; A. Smirnov; H. Gota; D. Barnes; B. H. Deng; M. C. Thompson; E. Trask; X. Yang; S. Putvinski; N. Rostoker; R. Andow; S. Aefsky; N. Bolte; D. Q. Bui; F. Ceccherini; R. Clary; A.H. Cheung; K. D. Conroy; Sean Dettrick; J. D. Douglass; P. Feng; Laura Galeotti; F. Giammanco; E. Granstedt

Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.


Physics of Plasmas | 2011

Formation of a long-lived hot field reversed configuration by dynamically merging two colliding high-β compact toroidsa)

H. Y. Guo; Michl Binderbauer; D. Barnes; S. Putvinski; N. Rostoker; L. Sevier; M. Tuszewski; M. G. Anderson; R. Andow; L. Bonelli; F. Brandi; R. Brown; D. Q. Bui; V. Bystritskii; F. Ceccherini; R. Clary; A.H. Cheung; K. D. Conroy; B. H. Deng; Sean Dettrick; J. D. Douglass; P. Feng; Laura Galeotti; E. Garate; F. Giammanco; F. J. Glass; O. Gornostaeva; H. Gota; D. Gupta; S. Gupta

A high temperature field reversed configuration (FRC) has been produced in the newly built, world’s largest compact toroid (CT) facility, C-2, by colliding and merging two high-β CTs produced using the advanced field-reversed θ-pinch technology. This long-lived, stable merged state exhibits the following key properties: (1) apparent increase in the poloidal flux from the first pass to the final merged state, (2) significantly improved confinement compared to conventional θ-pinch FRCs with flux decay rates approaching classical values in some cases, (3) strong conversion from kinetic energy into thermal energy with total temperature (Te + Ti) exceeding 0.5 keV, predominantly into the ion channel. Detailed modeling using a new 2-D resistive magnetohydrodynamic (MHD) code, LamyRidge, has demonstrated, for the first time, the formation, translation, and merging/reconnection dynamics of such extremely high-β plasmas.


Physics of Plasmas | 2012

A new high performance field reversed configuration operating regime in the C-2 devicea)

Michel Tuszewski; Artem Smirnov; M. C. Thompson; T. Akhmetov; A. Ivanov; R. Voskoboynikov; D. Barnes; Michl Binderbauer; R. Brown; D. Q. Bui; R. Clary; K. D. Conroy; Bihe Deng; S. A. Dettrick; Jon Douglass; Eusebio Garate; F. J. Glass; H. Gota; H.Y. Guo; Deepak K. Gupta; S. Gupta; John Kinley; K. Knapp; S. Korepanov; A. Longman; M. Hollins; X.L. Li; Y. Luo; R. Mendoza; Y. Mok

Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.


THE PHYSICS OF PLASMA-DRIVEN ACCELERATORS AND ACCELERATOR-DRIVEN FUSION: The Proceedings of Norman Rostoker Memorial Symposium | 2016

Recent breakthroughs on C-2U: Norman's legacy

Michl Binderbauer; T. Tajima; Michel Tuszewski; L. Schmitz; A. Smirnov; H. Gota; E. Garate; D. Barnes; B. H. Deng; E. Trask; X. Yang; S. Putvinski; R. Andow; N. Bolte; D. Q. Bui; F. Ceccherini; R. Clary; A.H. Cheung; K. D. Conroy; Sean Dettrick; J. D. Douglass; P. Feng; Laura Galeotti; F. Giammanco; E. Granstedt; D. Gupta; S. Gupta; A.A. Ivanov; J. S. Kinley; K. Knapp

Conventional field-reversed configurations (FRC) face notable stability and confinement concerns, which can be ameliorated by introducing and maintaining a significant fast ion population in the system. This is the conjecture first introduced by Norman Rostoker multiple decades ago and adopted as the central design tenet in Tri Alpha Energy’s advanced beam driven FRC concept. In fact, studying the physics of such neutral beam (NB) driven FRCs over the past decade, considerable improvements were made in confinement and stability. Next to NB injection, the addition of axially streaming plasma guns, magnetic end plugs, as well as advanced surface conditioning lead to dramatic reductions in turbulence driven losses and greatly improved stability. In turn, fast ion confinement improved significantly and allowed for the build-up of a dominant fast particle population. This recently led to the breakthrough of sustaining an advanced beam driven FRC, thereby demonstrating successful maintenance of trapped magnetic...


Review of Scientific Instruments | 2014

Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration.

L. Schmitz; E. Ruskov; B. H. Deng; H. Gota; Deepak K. Gupta; Michel Tuszewski; Jon Douglass; W. A. Peebles; Michl Binderbauer; T. Tajima

A versatile heterodyne Doppler Backscattering (DBS) system is used to measure density fluctuation levels (in the wavenumber range kρs ≤ 50), and the toroidal E × B flow velocity in the C-2 Field-Reversed Configuration (FRC). Six tunable frequencies in three waveguide bands (26 GHz ≤ f ≤ 90 GHz) are launched using monostatic beam optics, via a quasi-optical beam combiner/polarizer and an adjustable parabolic focusing mirror (inside the vacuum enclosure) achieving Gaussian beam spot sizes of 3-5.5 cm at the X/O-mode cutoff. The DBS system covers plasma densities of 0.8 × 10(13) ≤ ne ≤ 1 × 10(14) cm(-3), and provides access to the FRC core (up to the field null) and across the FRC separatrix into the scrape-off layer plasma.


SPACE TECHNOLOGY AND APPLICATIONS INTERNAT.FORUM-STAIF 2004: Conf.on Thermophys.in Microgravity; Commercial/Civil Next Gen.Space Transp.; 21st Symp.Space Nuclear Power & Propulsion; Human Space Explor.; Space Colonization; New Frontiers & Future Concepts | 2004

Colliding beam fusion reactor space propulsion system

A. Cheung; Michl Binderbauer; F. Liu; Artan Qerushi; N. Rostoker; F. J. Wessel

The Colliding Beam Fusion Reactor Space Propulsion System, CBFR‐SPS, is an aneutronic, magnetic‐field‐reversed configuration, fueled by an energetic‐ion mixture of hydrogen and boron11 (H‐B11). Particle confinement and transport in the CBFR‐SPS are classical, hence the system is scaleable. Fusion products are helium ions, α‐particles, expelled axially out of the system. α‐particles flowing in one direction are decelerated and their energy recovered to “power” the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive‐radiation shield. This paper describes a 100 MW CBFR‐SPS design, including estimates for the propulsion‐system parameters and masses. Specific emphasis is placed on the design of a closed‐cycle, Brayton‐heat engine, consisting of heat‐exchangers, turbo‐alternator, compressor, and finned radiators.


Review of Scientific Instruments | 2016

Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

M. C. Thompson; H. Gota; S. Putvinski; Michel Tuszewski; Michl Binderbauer

The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.


Review of Scientific Instruments | 2016

Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

T. Matsumoto; J. Sekiguchi; Tomohiko Asai; H. Gota; Eusebio Garate; I. Allfrey; Travis Valentine; M. Morehouse; T. Roche; J. S. Kinley; S. Aefsky; M. Cordero; W. Waggoner; Michl Binderbauer; T. Tajima

A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.


Review of Scientific Instruments | 2014

Overview of C-2 field-reversed configuration experiment plasma diagnostics.

H. Gota; M. C. Thompson; Michel Tuszewski; Michl Binderbauer

A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.


Review of Scientific Instruments | 2018

Integrated diagnostic and data analysis system of the C-2W advanced beam-driven field-reversed configuration plasma experiment

M. C. Thompson; T. M. Schindler; R. Mendoza; H. Gota; S. Putvinski; Michl Binderbauer; Tae Team

The new C-2W experiment (also called Norman) at TAE Technologies, Inc. studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes over 700 magnetic sensors, four interferometer systems, multi-chord far-infrared polarimetry, two Thomson scattering systems, ten types of spectroscopic measurements, multiple fast imaging cameras with selectable atomic line filters, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. Most of these diagnostic systems are newly built using experience and data from the preceding C-2U experiment to guide the design process. A variety of commercial and custom acquisition electronics collect over 4000 raw signals from the C-2W diagnostics. These data are processed into physics results using a large-scale database of diagnostics metadata and analysis software, both built using open-source software tools.

Collaboration


Dive into the Michl Binderbauer's collaboration.

Top Co-Authors

Avatar

Eusebio Garate

University of California

View shared research outputs
Top Co-Authors

Avatar

T. Tajima

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Artan Qerushi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge