Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Midhat H. Abdulreda is active.

Publication


Featured researches published by Midhat H. Abdulreda.


Cell Metabolism | 2011

Innervation Patterns of Autonomic Axons in the Human Endocrine Pancreas

Rayner Rodriguez-Diaz; Midhat H. Abdulreda; Alexander L. Formoso; Itai Gans; Camillo Ricordi; Per-Olof Berggren; Alejandro Caicedo

The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, thus impacting glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are unknown, particularly in human. Here we demonstrate that the innervation of human islets is different from that of mouse islets and does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, unlike mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet, and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream.


Nature Medicine | 2011

Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans

Rayner Rodriguez-Diaz; Robin Dando; M. Caroline Jacques-Silva; Alberto Fachado; Judith Molina; Midhat H. Abdulreda; Camillo Ricordi; Stephen D. Roper; Per-Olof Berggren; Alejandro Caicedo

Acetylcholine is a neurotransmitter that has a major role in the function of the insulin-secreting pancreatic beta cell. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to the case in mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of human islets provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. Cholinergic signaling within islets represents a potential therapeutic target in diabetes, highlighting the relevance of this advance to future drug development.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-resolution, noninvasive longitudinal live imaging of immune responses

Midhat H. Abdulreda; Gaetano Faleo; R. D. Molano; Maite Lopez-Cabezas; Judith Molina; Yaohong Tan; Oscar A. Ron Echeverria; Elsie Zahr-Akrawi; Rayner Rodriguez-Diaz; Patrick Karlsson Edlund; Ingo B. Leibiger; Allison L. Bayer; Victor L. Perez; Camillo Ricordi; Alejandro Caicedo; Antonello Pileggi; Per-Olof Berggren

Intravital imaging emerged as an indispensible tool in biological research, and a variety of imaging techniques have been developed to noninvasively monitor tissues in vivo. However, most of the current techniques lack the resolution to study events at the single-cell level. Although intravital multiphoton microscopy has addressed this limitation, the need for repeated noninvasive access to the same tissue in longitudinal in vivo studies remains largely unmet. We now report on a previously unexplored approach to study immune responses after transplantation of pancreatic islets into the anterior chamber of the mouse eye. This approach enabled (i) longitudinal, noninvasive imaging of transplanted tissues in vivo; (ii) in vivo cytolabeling to assess cellular phenotype and viability in situ; (iii) local intervention by topical application or intraocular injection; and (iv) real-time tracking of infiltrating immune cells in the target tissue.


Diabetes | 2011

Donor Islet Endothelial Cells in Pancreatic Islet Revascularization

Daniel Nyqvist; Stephan Speier; Rayner Rodriguez-Diaz; R. Damaris Molano; Saša Lipovšek; Marjan Rupnik; Andrea Dicker; Erwin Ilegems; Elsie Zahr-Akrawi; Judith Molina; Maite Lopez-Cabeza; Susana Villate; Midhat H. Abdulreda; Camillo Ricordi; Alejandro Caicedo; Antonello Pileggi; Per-Olof Berggren

OBJECTIVE Freshly isolated pancreatic islets contain, in contrast to cultured islets, intraislet endothelial cells (ECs), which can contribute to the formation of functional blood vessels after transplantation. We have characterized how donor islet endothelial cells (DIECs) may contribute to the revascularization rate, vascular density, and endocrine graft function after transplantation of freshly isolated and cultured islets. RESEARCH DESIGN AND METHODS Freshly isolated and cultured islets were transplanted under the kidney capsule and into the anterior chamber of the eye. Intravital laser scanning microscopy was used to monitor the revascularization process and DIECs in intact grafts. The grafts’ metabolic function was examined by reversal of diabetes, and the ultrastructural morphology by transmission electron microscopy. RESULTS DIECs significantly contributed to the vasculature of fresh islet grafts, assessed up to 5 months after transplantation, but were hardly detected in cultured islet grafts. Early participation of DIECs in the revascularization process correlated with a higher revascularization rate of freshly isolated islets compared with cultured islets. However, after complete revascularization, the vascular density was similar in the two groups, and host ECs gained morphological features resembling the endogenous islet vasculature. Surprisingly, grafts originating from cultured islets reversed diabetes more rapidly than those originating from fresh islets. CONCLUSIONS In summary, DIECs contributed to the revascularization of fresh, but not cultured, islets by participating in early processes of vessel formation and persisting in the vasculature over long periods of time. However, the DIECs did not increase the vascular density or improve the endocrine function of the grafts.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function

Rayner Rodriguez-Diaz; Stephan Speier; R. D. Molano; Alexander L. Formoso; Itai Gans; Midhat H. Abdulreda; Over Cabrera; Judith Molina; Alberto Fachado; Camillo Ricordi; Ingo B. Leibiger; Antonello Pileggi; Per-Olof Berggren; Alejandro Caicedo

The autonomic nervous system is thought to modulate blood glucose homeostasis by regulating endocrine cell activity in the pancreatic islets of Langerhans. The role of islet innervation, however, has remained elusive because the direct effects of autonomic nervous input on islet cell physiology cannot be studied in the pancreas. Here, we used an in vivo model to study the role of islet nervous input in glucose homeostasis. We transplanted islets into the anterior chamber of the eye and found that islet grafts became densely innervated by the rich parasympathetic and sympathetic nervous supply of the iris. Parasympathetic innervation was imaged intravitally by using transgenic mice expressing GFP in cholinergic axons. To manipulate selectively the islet nervous input, we increased the ambient illumination to increase the parasympathetic input to the islet grafts via the pupillary light reflex. This reduced fasting glycemia and improved glucose tolerance. These effects could be blocked by topical application of the muscarinic antagonist atropine to the eye, indicating that local cholinergic innervation had a direct effect on islet function in vivo. By using this approach, we found that parasympathetic innervation influences islet function in C57BL/6 mice but not in 129X1 mice, which reflected differences in innervation densities and may explain major strain differences in glucose homeostasis. This study directly demonstrates that autonomic axons innervating the islet modulate glucose homeostasis.


Diabetologia | 2011

The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes

Victor L. Perez; Alejandro Caicedo; Dora M. Berman; E. Arrieta; Midhat H. Abdulreda; Rayner Rodriguez-Diaz; Antonello Pileggi; E. Hernandez; Sander R. Dubovy; Jean Marie Parel; C. Ricordi; N. M. Kenyon; Norma S. Kenyon; Per-Olof Berggren

Aims/hypothesisThe aim of this study was to provide evidence that the anterior chamber of the eye serves as a novel clinical islet implantation site.MethodsIn a preclinical model, allogeneic pancreatic islets were transplanted into the anterior chamber of the eye of a baboon model for diabetes, and metabolic and ophthalmological outcomes were assessed.ResultsIslets readily engrafted on the iris and there was a decrease in exogenous insulin requirements due to insulin secretion from the intraocular grafts. No major adverse effects on eye structure and function could be observed during the transplantation period.Conclusions/interpretationOur study demonstrates the long-term survival and function of allogeneic islets after transplantation into the anterior chamber of the eye. The safety and simplicity of this procedure provides support for further studies aimed at translating this technology into the clinic.


Biophysical Journal | 2010

Temperature Modulation of Integrin-Mediated Cell Adhesion

Felix Rico; Calvin Chu; Midhat H. Abdulreda; Yujing Qin; Vincent T. Moy

In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Young capillary vessels rejuvenate aged pancreatic islets

Joana Almaça; Judith Molina; Rafael Arrojo e Drigo; Midhat H. Abdulreda; Won Bae Jeon; Per-Olof Berggren; Alejandro Caicedo; Hong Gil Nam

Significance The regulation of blood glucose is a homeostatic process that declines with age, but it is unknown whether this disturbance is a consequence of intrinsic dysfunction of the regulatory organ, the pancreatic islet. In marked contrast to the widely held notion that the insulin-producing pancreatic beta cell loses function with wear and tear, and thus causes age-related disturbances in glucose homeostasis, we show that mouse and human beta cells are fully functional at advanced age. The pancreatic islet as an organ, however, is threatened by vascular senescence. Replacing the islet vasculature in aged islet grafts rejuvenates the islet and fully restores glucose homeostasis, indicating that islet blood vessels should be targeted to mitigate frail glucose homeostasis associated with aging. Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature.


Cell Metabolism | 2016

Liraglutide compromises pancreatic β cell function in a humanized mouse model

Midhat H. Abdulreda; Rayner Rodriguez-Diaz; Alejandro Caicedo; Per-Olof Berggren

Incretin mimetics are frequently used in the treatment of type 2 diabetes because they potentiate β cell response to glucose. Clinical evidence showing short-term benefits of such therapeutics (e.g., liraglutide) is abundant; however, there have been several recent reports of unexpected complications in association with incretin mimetic therapy. Importantly, clinical evidence on the potential effects of such agents on the β cell and islet function during long-term, multiyear use remains lacking. We now show that prolonged daily liraglutide treatment of >200 days in humanized mice, transplanted with human pancreatic islets in the anterior chamber of the eye, is associated with compromised release of human insulin and deranged overall glucose homeostasis. These findings raise concern about the chronic potentiation of β cell function through incretin mimetic therapy in diabetes.


Integrative Biology | 2009

Pulling force generated by interacting SNAREs facilitates membrane hemifusion

Midhat H. Abdulreda; Akhil Bhalla; Felix Rico; Per-Olof Berggren; Edwin R. Chapman; Vincent T. Moy

In biological systems, membrane fusion is mediated by specialized proteins. Although soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNAREs) provide the minimal molecular machinery required to drive membrane fusion, the precise mechanism for SNARE-mediated fusion remains to be established. Here, we used atomic force microscope (AFM) spectroscopy to determine whether the pulling force generated by interacting SNAREs is directly coupled to membrane fusion. The mechanical strength of the SNARE binding interaction was determined by single molecule force measurements. It was revealed that the forced unbinding of the SNARE complex formed between opposing (trans) bilayers involves two activation barriers; where the steep inner barrier governs the transition from the bound to an intermediate state and the outer barrier governs the transition between the intermediate and the unbound state. Moreover, truncation of either SNAP-25 or VAMP 2 reduced the slope of the inner barrier significantly and, consequently, reduced the pulling strength of the SNARE complex; thus, suggesting that the inner barrier determines the binding strength of the SNARE complex. In parallel, AFM compression force measurements revealed that truncated SNAREs were less efficient than native SNAREs in facilitating hemifusion of the apposed bilayers. Together, these findings reveal a mechanism by which a pulling force generated by interacting trans-SNAREs reduces the slope of the hemifusion barrier and, subsequently, facilitates hemifusion and makes the membranes more prone to fusion.

Collaboration


Dive into the Midhat H. Abdulreda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge