Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Midori Kato-Negishi is active.

Publication


Featured researches published by Midori Kato-Negishi.


Nature Materials | 2013

Metre-long cell-laden microfibres exhibit tissue morphologies and functions

Hiroaki Onoe; Teru Okitsu; Akane Itou; Midori Kato-Negishi; Riho Gojo; Daisuke Kiriya; Koji Sato; Shigenori Miura; Shintaroh Iwanaga; Kaori Kuribayashi-Shigetomi; Yukiko T. Matsunaga; Yuto Shimoyama; Shoji Takeuchi

Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem cells can be fabricated, and that the microfibres reconstitute intrinsic morphologies and functions of living tissues. We also show that these functional fibres can be assembled, by weaving and reeling, into macroscopic cellular structures with various spatial patterns. Moreover, fibres encapsulating primary pancreatic islet cells and transplanted through a microcatheter into the subrenal capsular space of diabetic mice normalized blood glucose concentrations for about two weeks. These microfibres may find use as templates for the reconstruction of fibre-shaped functional tissues that mimic muscle fibres, blood vessels or nerve networks in vivo.


Biomaterials | 2013

Three-dimensional neuron–muscle constructs with neuromuscular junctions

Yuya Morimoto; Midori Kato-Negishi; Hiroaki Onoe; Shoji Takeuchi

This paper describes a fabrication method of muscle tissue constructs driven by neurotransmitters released from activated motor neurons. The constructs consist of three-dimensional (3D) free-standing skeletal muscle fibers co-cultured with motor neurons. We differentiated mouse neural stem cells (mNSCs) cultured on the skeletal muscle fibers into neurons that extend their processes into the muscle fibers. We found that acetylcholine receptors (AChRs) were formed at the connection between the muscle fibers and the neurons. The neuron-muscle constructs consist of highly aligned, long and matured muscle fibers that facilitate wide contractions of muscle fibers in a single direction. The contractions of the neuron-muscle construct were observed after glutamic acid activation of the neurons. The contraction was stopped by treatment with curare, an neuromuscular junction (NMJ) antagonist. These results indicate that our method succeeded in the formation of NMJs in the neuron-muscle constructs. The neuron-muscle construct system can potentially be used in pharmacokinetic assays related to NMJ disease therapies and in soft-robotic actuators.


Biomaterials | 2010

A neurospheroid network-stamping method for neural transplantation to the brain.

Midori Kato-Negishi; Yukiko Tsuda; Hiroaki Onoe; Shoji Takeuchi

Neural transplantation therapy using neural stem cells has received as potential treatments for neurodegenerative diseases. Indeed, this therapy is thought to be effective for replacement of degenerating neurons in restricted anatomical region. However, because injected neural stem cells integrate randomly into the host neural network, another approach is needed to establish a neural pathway between selective areas of the brain or treat widespread degeneration across multiple brain regions. One of the promising approaches might be a therapy using pre-made neural network in vitro by the tissue engineering technique. In this study, we engineered a three-dimensional (3D) tissue with a neuronal network that can be easily manipulated and transplanted onto the host brain tissue in vivo. A polydimethylsiloxane microchamber array facilitated the formation of multiple neurospheroids, which in turn interconnected via neuronal processes to form a centimeter-sized neurospheroid network (NSN). The NSN was transferable onto the cortical surface of the brain without damage of the neuronal network. After transfer onto the cortical tissue, the NSN showed neural activity for more than 8 days. Moreover, neurons of the transplanted NSN extended their axons into the host cortical tissue and established synaptic connections with host neurons. Our findings suggest that this method could lay the foundation for treating severe degenerative brain disease.


Advanced Healthcare Materials | 2013

Millimeter-Sized Neural Building Blocks for 3D Heterogeneous Neural Network Assembly

Midori Kato-Negishi; Yuya Morimoto; Hiroaki Onoe; Shoji Takeuchi

A millimeter-sized neural building block (NBB) shows high versatility to form a 3D heterogeneous neural component. A millimeter-sized 3D neural network between heterogeneous neural tissues is established, and an efficient technique is then developed to observe the spatiotemporal metrological changes of single neuron in the NBB. This technique allows the visualization of axonal extension, dendritic branching, and morphological changes of presynaptic components and synapses in real time.


Nature Communications | 2015

Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6

Shigenori Miura; Koji Sato; Midori Kato-Negishi; Tetsuhiko Teshima; Shoji Takeuchi

Microvilli are cellular membrane protrusions present on differentiated epithelial cells, which can sense and interact with the surrounding fluid environment. Biochemical and genetic approaches have identified a set of factors involved in microvilli formation; however, the underlying extrinsic regulatory mechanism of microvilli formation remains largely unknown. Here we demonstrate that fluid shear stress (FSS), an external mechanical cue, serves as a trigger for microvilli formation in human placental trophoblastic cells. We further reveal that the transient receptor potential, vanilloid family type-6 (TRPV6) calcium ion channel plays a critical role in flow-induced Ca2+ influx and microvilli formation. TRPV6 regulates phosphorylation of Ezrin via a Ca2+-dependent phosphorylation of Akt; this molecular event is necessary for microvillar localization of Ezrin in response to FSS. Our findings provide molecular insight into the microvilli-mediated mechanoresponsive cellular functions, such as epithelial absorption, signal perception and mechanotransduction.


Journal of Neuroscience Research | 2015

Neural stem/progenitor cell-laden microfibers promote transplant survival in a mouse transected spinal cord injury model

Keiko Sugai; Soraya Nishimura; Midori Kato-Negishi; Hiroaki Onoe; Shintaroh Iwanaga; Yoshiaki Toyama; Morio Matsumoto; Shoji Takeuchi; Hideyuki Okano; Masaya Nakamura

Previous studies have demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) into the lesioned spinal cord can promote functional recovery following incomplete spinal cord injury (SCI) in animal models. However, this strategy is insufficient following complete SCI because of the gap at the lesion epicenter. To obtain functional recovery in a mouse model of complete SCI, this study uses a novel collagen‐based microfiber as a scaffold for engrafted NS/PCs. We hypothesized that the NS/PC–microfiber combination would facilitate lesion closure as well as transplant survival in the transected spinal cord. NS/PCs were seeded inside the novel microfibers, where they maintained their capacity to differentiate and proliferate. After transplantation, the stumps of the transected spinal cord were successfully bridged by the NS/PC‐laden microfibers. Moreover, the transplanted cells migrated into the host spinal cord and differentiated into three neural lineages (astrocytes, neurons, and oligodendrocytes). However, the NS/PC‐laden scaffold could not achieve a neural connection between the rostral end of the injury and the intact caudal area of the spinal cord, nor could it achieve recovery of motor function. To obtain optimal functional recovery, a microfiber design with a modified composition may be useful. Furthermore, combinatorial therapy with rehabilitation and/or medications should also be considered for practical success of biomaterial/cell transplantation‐based approaches to regenerative medicine.


international conference on micro electro mechanical systems | 2011

Living cell fabric

Hiroaki Onoe; Riho Gojo; Yukiko T. Matsunaga; Daisuke Kiriya; Midori Kato-Negishi; Kaori Kuribayashi-Shigetomi; Yuto Shimoyama; Shoji Takeuchi

This paper describes a centimeter-scale living cell fabric made of cell-containing core-shell hydrogel fibers, “cell fiber.” We improved core-shell fiber applicable to various types of cells, and precisely characterized their biofunctions and mechanical properties. Using these cell fibers, we demonstrate a centimeter-scale living cell fabric woven by our micro weaving machine. We believe that our weaving approach using cell fibers would be a powerful method for constructing large-scale 3D-patterned functional tissues.


Advanced Healthcare Materials | 2016

Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions

Hiroaki Onoe; Midori Kato-Negishi; Akane Itou; Shoji Takeuchi

In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.


Advanced Healthcare Materials | 2017

Rod-Shaped Neural Units for Aligned 3D Neural Network Connection

Midori Kato-Negishi; Hiroaki Onoe; Akane Ito; Shoji Takeuchi

This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro.


international conference on micro electro mechanical systems | 2010

Transplantation of a neurospheroid network onto the rat brain

Midori Kato-Negishi; Yukiko Tsuda; Hiroaki Onoe; Shoji Takeuchi

This paper describes a method to transplant neurospheroid network onto the rat brain. We first patterned the uniform sized neurospheroids on the PDMS microchamber, and cultured for 1–2 weeks. After 2-week culture, the neurospheroids tightly connected each other with extending their neuronal processes (e.g. dendrite, axons) and formed neuronal network. We realized that the neurospheroid network can be transferred from the PDMS microchamber onto the glass plate or the rat brain. These transferred neurospheroid network had also neuronal activities. We believe that this transfer method of neurospheroid network should be a useful model for the tissue engineering and medical transplantation.

Collaboration


Dive into the Midori Kato-Negishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge