Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Midori Yamamoto is active.

Publication


Featured researches published by Midori Yamamoto.


Current Drug Metabolism | 2006

Induction of the hepatic cytochrome P450 2B subfamily by xenobiotics : Research history, evolutionary aspect, relation to tumorigenesis, and mechanism

Hideyuki Yamada; Yuji Ishii; Midori Yamamoto; Kazuta Oguri

The cytochrome P450 belonging to the CYP2B subfamily has long been of great interest because it can be induced by xenobiotics. While a well known diagnostic ligand-receptor theory explains the induction of the CYP1A subfamily, the mechanism by which xenobiotics induce the CYP2B subfamily is not fully understood. Although the constitutive androstane receptor (CAR) undoubtedly plays a crucial role in the induction, many questions regarding the mechanism of CAR activation by xenobiotics have not yet been answered. It is a puzzle that many structurally-unrelated chemicals can increase the expression of the CYP2B subfamily. This may support a mechanism(s) distinct from the signaling induced by ligand-receptor binding. Indeed, phenobarbital, a typical inducer, cannot associate with CAR. Thus, no one is able to answer a fundamental question: what is the initial target of xenobiotics to produce induced expression of CYP2B enzymes? In this review, we survey the research history of CYP2B induction, list the inducers reported so far, and discuss the mechanism of induction including the target site of inducers.


PLOS ONE | 2012

Restoration of Dioxin-Induced Damage to Fetal Steroidogenesis and Gonadotropin Formation by Maternal Co-Treatment with α-Lipoic Acid

Takayuki Koga; Takumi Ishida; Tomoki Takeda; Yuji Ishii; Hiroshi Uchi; Kiyomi Tsukimori; Midori Yamamoto; Masaru Himeno; Masutaka Furue; Hideyuki Yamada

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA), an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR) could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s) other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production.


Neuropathology | 2010

The effects of dynein inhibition on the autophagic pathway in glioma cells

Midori Yamamoto; Satoshi Suzuki; Masaru Himeno

Autophagy has multiple physiological functions, including protein degradation, organelle turnover and the response of cancer cells to chemotherapy. Because autophagy is implicated in a number of diseases, a better understanding of the molecular mechanisms of autophagy is needed for therapeutic purposes, including rational design of drugs. Autophagy is a process that occurs in several steps as follows: formation of phagophores, formation of mature autophagosomes, targeting and trafficking of autophagosomes to lysosomes, formation of autolysosomes by fusion between autophagosomes and lysosomes, and finally, degradation of the autophagic bodies within the lysosomes. It has been suggested that autophagosome formation is driven by molecular motor machineries, and, once formed, autophagosomes need to reach lysosomes, enriched perinuclearly around the microtubule‐organizing centre. While it is recognized that all these steps require the cytoskeletal network, little is known about the mechanisms involved. Here we assessed the role of cytoplasmic dynein in the autophagic process of human glioma cells to determine the part played by dynein in autophagy. We observed that chemical interference with dynein function led to an accumulation of autophagosomes, suggesting impaired autophagosome‐lysosome fusion. In contrast, we found that overexpression of dynamitin, which disrupts the dynein complex, reduced the number of autophagosomes, suggesting the requirement of the dynein‐dynactin interaction in the early membrane trafficking step in autophagosome formation. These results suggest that dynein plays a variety of crucial roles during the autophagic process in glioma cells.


Molecular Pharmacology | 2013

Maternal Exposure to Dioxin Imprints Sexual Immaturity of the Pups through Fixing the Status of the Reduced Expression of Hypothalamic Gonadotropin-Releasing Hormone

Tomoki Takeda; Misaki Fujii; Yukiko Hattori; Midori Yamamoto; Takao Shimazoe; Yuji Ishii; Masaru Himeno; Hideyuki Yamada

Our previous studies have shown that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 μg/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during the late fetal and early postnatal period, leading to the imprinting of defects in sexual behaviors at adulthood. However, it remains unclear how the attenuation of pituitary LH is linked to sexual immaturity. To address this issue, we performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity on the pituitary and hypothalamus of male pups, born of TCDD-treated dams, at the age of postnatal day (PND) 70. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus because of published evidence that it has a role in sexual behaviors. An attenuation by TCDD of GnRH expression emerged at PND4, and no subsequent return to the control level was seen. A change in neither DNA methylation nor histone acetylation accounted for the reduced expression of GnRH. Intracerebroventricular infusion of GnRH to the TCDD-exposed pups after reaching maturity restored the impairment of sexual behaviors. Supplying equine chorionic gonadotropin, an LH-mimicking hormone, to the TCDD-exposed fetuses at GD15 resulted in a recovery from the reduced expression of GnRH, as well as from the defects in sexual behavior. These results strongly suggest that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing the LH-assisted steroidogenesis at the perinatal stage, and this mechanism imprints defects in sexual behaviors at adulthood.


Biochimica et Biophysica Acta | 2013

Selenium-binding protein 1: Its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin

Sayuri Tsujimoto; Takumi Ishida; Tomoki Takeda; Yuji Ishii; Yuko Onomura; Kiyomi Tsukimori; Shinji Takechi; Tadatoshi Yamaguchi; Hiroshi Uchi; Satoshi Suzuki; Midori Yamamoto; Masaru Himeno; Masutaka Furue; Hideyuki Yamada

BACKGROUND Selenium-binding protein 1 (Selenbp1) is suggested to play a role in tumor suppression, and may be involved in the toxicity produced by dioxin, an activator of aryl hydrocarbon receptors (AhR). However, the mechanism or likelihood is largely unknown because of the limited information available about the physiological role of Selenbp1. METHODS To address this issue, we generated Selenbp1-null [Selenbp1 (-/-)] mice, and examined the toxic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in this mouse model. RESULTS Selenbp1 (-/-) mice exhibited only a few differences from wild-type mice in their apparent phenotypes. However, a DNA microarray experiment showed that many genes including Notch1 and Cdk1, which are known to be enhanced in ovarian carcinoma, are also increased in the ovaries of Selenbp1 (-/-) mice. Based on the different responses to TCDD between C57BL/6J and DBA/2J strains of mice, the expression of Selenbp1 is suggested to be under the control of AhR. However, wasting syndrome by TCDD occurred equally in Selenbp1 (-/-) and (+/+) mice. CONCLUSIONS The above pieces of evidence suggest that 1) Selenbp1 suppresses the expression of tumor-promoting genes although a reduction in Selenbp1 alone is not very serious as far as the animals are concerned; and 2) Selenbp1 induction by TCDD is neither a pre-requisite for toxicity nor a protective response for combating TCDD toxicity. GENERAL SIGNIFICANCE Selenbp1 (-/-) mice exhibit little difference in their apparent phenotype and responsiveness to dioxin compared with the wild-type. This may be due to the compensation of Selenbp1 function by a closely-related protein, Selenbp2.


Biological & Pharmaceutical Bulletin | 2015

Dioxin-Produced Alteration in the Profiles of Fecal and Urinary Metabolomes: A Change in Bile Acids and Its Relevance to Toxicity

Saki Kakizuka; Tomoki Takeda; Yukiko Komiya; Akihiko Koba; Hiroshi Uchi; Midori Yamamoto; Masutaka Furue; Yuji Ishii; Hideyuki Yamada

This study investigated dioxin-induced changes in metabolomes in pubertal rat excrement. The administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or restricting dietary intake (pair-fed group) markedly altered the metabolomic profile including lipids, hormones, and vitamins in the urine and feces. TCDD caused an increase in the fecal chenodeoxycholic acid and taurocholic acid content and in urinary adrenaline and 17β-estradiol, while the urinary melatonin level was reduced by TCDD. These changes were not observed in the pair-fed group. In accordance with the elevated level of fecal bile acids, TCDD reduced the intestinal expression of the apical sodium-dependent bile salt transporter, which plays a role in resorbing bile acids from the bile duct. In addition, CYP7A1, a rate-limiting enzyme for bile acid biosynthesis, was attenuated by TCDD treatment, although TCDD induced hepatic CYP8B1, an enzyme essential for cholic acid synthesis. Supplying cholic acid or chenodeoxycholic acid to TCDD-exposed rats tended to restore the TCDD-produced reduction in serum triglycerides, whereas no similar trend was observed in wasting syndrome and lipid accumulation in the liver. These results suggest that: 1) TCDD alters the circulating levels of bile acids and hormones via a mechanism distinct from an attenuation in dietary intake, although the majority of TCDD-induced changes in nutrient contents in the excrement is due to a reduction in food intake; and 2) TCDD facilitates the excretion of bile acids and disrupts their biosynthesis, resulting in the disturbance of lipid homeostasis.


Oncology Letters | 2010

Resveratrol-induced autophagy in human U373 glioma cells

Midori Yamamoto; Satoshi Suzuki; Masaru Himeno


Journal of Toxicological Sciences | 2011

2,3,7,8-Tetrachlorodibenzo-p-dioxin potentially attenuates the gene expression of pituitary gonadotropin β-subunits in a fetal age-specific fashion: a comparative study using cultured pituitaries

Tomoki Takeda; Midori Yamamoto; Masaru Himeno; Shinji Takechi; Tadatoshi Yamaguchi; Takumi Ishida; Yuji Ishii; Hideyuki Yamada


Journal of Pharmacology and Experimental Therapeutics | 2000

Sequence Analyses of CYP2B Genes and Catalytic Profiles for P450s in Qdj:Sprague-Dawley Rats That Lack Response to the Phenobarbital-Mediated Induction of CYP2B2

Hideyuki Yamada; Hiromi Matsunaga; Kazuhiro Tsuji; Sanae Matsumoto; Midori Yamamoto; Yuji Ishii; Curtis J. Omiecinski; Kazuta Oguri


Iyakuhin Johogaku | 2018

Awareness Survey of Smart Drugs among Undergraduates

Midori Yamamoto; Yuji Ishii

Collaboration


Dive into the Midori Yamamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Himeno

Nagasaki International University

View shared research outputs
Top Co-Authors

Avatar

Kazuta Oguri

Kyushu University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge