Mie Holm Vilstrup
Odense University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mie Holm Vilstrup.
European Radiology | 2011
Poul Flemming Høilund-Carlsen; Oke Gerke; Mie Holm Vilstrup; Anne Lerberg Nielsen; Anders Thomassen; Søren Hess; Mette M. Høilund-Carlsen; Werner Vach; Henrik Petersen
ObjectivesWe report the 3-year clinical experience of a large new Danish PET/CT centre without capacity limitations in relation to national and European developments.MethodsThe use of PET/CT in cancer was registered from early 2006 to early 2009 to judge the impact on patient management and to compare it with national and European trends.Results6056 PET/CT examinations were performed in 4327 patients. Activity increased by 86 examinations per month compared with the same month the year before. Referrals came primarily from oncology (23.0%), haematology (21.6%), surgery (12.6%), internal medicine (12.7%) and gynaecology (5.5%). Referral indications were diagnosis (31.3%), staging (22.3%), recurrence detection (21.2%), response evaluation (17.0%) and other (8.2%). Response from nearly 60% of users showed that PET/CT caused a change in diagnosis and/or staging and/or treatment plan in 36.0% of cases. During the study period, there was a steep increase in the national use of FDG and in the European use of PET/CT.ConclusionsWe recorded a constantly increasing use of PET/CT that caused a change in diagnosis and/or staging and/or treatment plan in 36.0% of cases. In line with national and European trends this may suggest a shift in favour of functional rather than anatomical imaging.
Acta Oncologica | 2011
Jon Kroll Bjerregaard; Barbara M. Fischer; Mie Holm Vilstrup; Henrik Petersen; Michael Bau Mortensen; Christian Rønn Hansen; Jon Thor Asmussen; Per Pfeiffer; Poul Flemming Høilund-Carlsen
1 Department of Oncology, Odense University Hospital, Denmark, 2 Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Denmark, 3 Department of Nuclear Medicine, Odense University Hospital, Denmark, 4 Department of Surgery, Odense University Hospital, Denmark, 5 Laboratory of Radiation Physics, Odense University Hospital, Denmark and 6 Department of Radiology, Odense University Hospital, Denmark
International Journal of Gynecological Cancer | 2017
Mie Holm Vilstrup; Kirsten Marie Jochumsen; Søren Hess
Objective This study aims to ascertain if semiquantitative measurements derived from 18F-fluorodeoxyglucose positron emission tomography/computed tomography can be used as prognostic markers in patients with newly diagnosed endometrial cancer. Materials and methods Patients with endometrial cancer and a preoperative 18F-fluorodeoxyglucose positron emission tomography/computed tomography before curatively intended treatment were included. The scans were evaluated using standard uptake values [maximum standard uptake value (SUVmax) and partial volume corrected (c) mean standardized uptake value (SUVmean)] and whole-body total lesion glycolysis (cTLG). All measurements were analyzed as prognostic factors in relation to overall survival (OS). Receiver operating characteristic curves were performed on all 3 positron emission tomography measurements to find the optimal cut-off for predicting OS. Multivariate Cox proportional regression models were used for prognostic evaluation. Results Eighty-three patients (median age, 69.9 y; range, 26.8–91.1) with primarily high-risk endometrial cancer or suspected high The International Federation of Gynecology and Obstetrics stage were included. Mean follow-up time was 3.48 years (range, 0.31–6.87), and 24 patients died during follow-up. In multivariate analyses with adjustment for other known prognostic factors, a SUVmax of greater than or equal to 14.3 g/mL and cSUVmean of greater than or equal to 12.7 g/mL of the primary tumor yielded a hazard ratio for OS of 3.18 (1.19–8.49) and 1.93 (0.80–4.68), respectively. Whole-body cTLG of greater than or equal to 176.1 g yielded a hazard ratio of 5.70 (1.94–16.78) for OS in a multivariate analysis. Conclusions Preoperative SUVmax and cTLG showed potential as independent prognostic markers of OS in patients with primarily high-risk endometrial cancer. Thus, SUVmax and cTLG might help identify patients who could benefit from a more aggressive treatment strategy or closer surveillance.
Molecular Imaging and Biology | 2018
Birgitte Brinkmann Olsen; Albert Gjedde; Mie Holm Vilstrup; Iben Birgit Gade Johnsen; Gudrun Neumann; Drew A. Torigian; Abass Alavi; Poul Flemming Høilund-Carlsen
PurposeMalignant cells exhibit increased rates of aerobic glycolysis. Here, we tested whether the accumulation of fluoro-deoxyglucose-6-phosphate (FDG6P) in ovarian cancers of differential malignancy reflects inversely correlated elevations of hexokinase (HK) and glucose-6-phosphatase (G6Pase) activities.ProceduresTwenty-nine women with suspected ovarian cancer had positron emission tomography (PET) prior to surgery. From fresh-frozen tissue, we determined the activities of HK and G6Pase, and from the PET images, we determined the tumor maximum standardized uptake value (SUVmax) of 2-deoxy-2-[18F]fluoro-D-glucose.ResultsThe SUVmax of malignant lesions significantly exceeded the SUVmax of benign (p < 0.005) and borderline lesions (p < 0.0005) that did not differ significantly. We found no significant correlation between measured HK or G6Pase activities and histological tumor type or SUVmax except that G6Pase activities were higher in malignant than borderline lesions (p < 0.05). Measured HK and G6Pase activities correlated inversely (p < 0.05). The slopes from the regression lines of the three correlations yielded positively correlated abscissa and ordinate intercepts, designated HKmax and G6Pasemax, respectively (r = 0.67, p < 0.0001). The positive correlations between the abscissa and ordinate intercepts with SUVmax had regression coefficients of r = 0.44, p < 0.05; and r = 0.39, p < 0.05, respectively.ConclusionsThe results distinguished two ovarian cancer phenotypes, one with elevated HK activity and low G6Pase activity, and another with the opposite characteristics.
European Journal of Nuclear Medicine and Molecular Imaging | 2017
Oke Gerke; Mie Holm Vilstrup; Ulrich Halekoh; Malene Hildebrandt; Poul Flemming Høilund-Carlsen
Background: Group-sequential testing is widely used in pivotal therapeutic, but rarely in diagnostic research, although it may save studies, time, and costs. The purpose of this paper was to demonstrate a group-sequential analysis strategy in an intra-observer study on quantitative FDG-PET/CT measurements, illuminating the possibility of early trial termination which implicates significant potential time and resource savings. Methods: Primary lesion maximum standardised uptake value (SUVmax) was determined twice from preoperative FDG-PET/CTs in 45 ovarian cancer patients. Differences in SUVmax were assumed to be normally distributed, and sequential one-sided hypothesis tests on the population standard deviation of the differences against a hypothesised value of 1.5 were performed, employing an alpha spending function. The fixed-sample analysis (N = 45) was compared with the group-sequential analysis strategies comprising one (at N = 23), two (at N = 15, 30), or three interim analyses (at N = 11, 23, 34), respectively, which were defined post hoc. Results: When performing interim analyses with one third and two thirds of patients, sufficient agreement could be concluded after the first interim analysis and the final analysis. Other partitions did not suggest early stopping after adjustment for multiple testing due to one influential outlier and our small sample size. Conclusions: Group-sequential testing may enable early stopping of a trial, allowing for potential time and resource savings. The testing strategy must, though, be defined at the planning stage, and sample sizes must be reasonably large at interim analysis to ensure robustness against single outliers. Group-sequential testing may have a place in accuracy and agreement studies.
Methods for Evaluating Medical Tests and Biomarkers | 2016
Oke Gerke; Mie Holm Vilstrup; Eivind Antonsen Segtnan; Ulrich Halekoh; Poul Flemming Høilund-Carlsen
Joris de Groot, Christiana Naaktgeboren, Hans Reitsma, Carl Moons Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands Correspondence: Joris de Groot ([email protected]) A major contributor to the rising problem of overdiagnosis, with the subsequent risk of overtreatment, is the development of highly sensitive diagnostic technologies that challenge and sometimes expand prevailing disease definitions. Although the value of such new technology might be that it identifies new, milder, earlier or even other abnormalities, it is uncertain whether these “abnormalities” provide the same diagnostic and prognostic information, or require the same treatment as the original targeted disease. It is often unclear which of the newly detected abnormalities are benign and how many people might be diagnosed and treated unnecessarily as a result of widespread introduction of the new test. Failure to investigate the clinical relevance of broadening disease definitions which include these newly detected abnormalities may therefore lead to overdiagnosis and overtreatment. Spiral CT used in diagnosing pulmonary embolism, detecting small subsegmental embolisms, has been mentioned as an example of such situation. On-going technological advancements in medicine will only further increase the development of new diagnostic technologies that challenge existing disease definitions. We show why traditional cross-sectional diagnostic accuracy studies are insufficient to evaluate such new tests and how methodology for assessing their performance should catch up and keep pace with present-day technological developments. It is crucial to improve data analysis and presentation of current diagnostic studies, to make better use of existing data, or ultimately perform test-treatment trials to answer the question whether introduction of a new high sensitive test will in fact improve patient relevant outcomes, or rather induce overdiagnosis and overtreatment.
European Journal of Nuclear Medicine and Molecular Imaging | 2016
Oke Gerke; Mie Holm Vilstrup; Eivind Antonsen Segtnan; Ulrich Halekoh; Poul Flemming Høilund-Carlsen
Hypothesis: We assessed in in vitro and in vivo models of ovarian cancer the therapeutic efficacy of 16F12 mAbs directed against Mullerian Inhibiting Substance type II receptor (MISRII) radiolabeled with 213Bi Methods: In vitro, both direct and bystander cytotoxic effects were measured using clonogenic assay and standard medium transfer protocol. Typically, Clonogenic survival was assessed in SK-OV-3 donor cells expressing MISRII and exposed for 90 min to 0.06-0.5MBq/mL of 16F12 213Bi-mAbs. Bystander cytotoxicity was measured in recipient cells grown in non-radioactive culture medium preconditioned for 2 hours in the presence of donor cells. DNA double strand breaks (DSBs) were measured in both donor and recipients cells using immunofluorescent detection of gamma-H2AX and of 53BP1. In vivo we explored in athymic nude mice bearing intraperitoneal (IP) MISRII-expressing AN3CA tumor the therapeutic efficacy of brief-intraperitoneal radioimmunotherapy (BIP-RIT, 12.95 37 MBq; 37MBq/mg) or of intraperitoneal RIT (IP-RIT; 2.96-12.95 MBq; 37MBq/mg) using 213Bi-16F12. BIP-RIT mimics hyperthermic intraperitoneal chemotherapy as used in clinic. It consists of intraperitoneal injection of high activities of radiolabeled mAbs followed 30 min later by wash of the peritoneal cavity with saline solution to remove unbound radioactivity. The biodistribution of radiolabeled antibodies following IP-RIT (12.95 MBq; 37MBq/mg) or BIP-RIT (37 MBq; 37MBq/mg) was assessed. Results: In vitro we showed in donor cells a strong direct cytotoxicity of 16F12 213Bi-mAbs. A significant bystander cytotoxicity was also measured in recipient cells. Genotoxic effects were also demonstrated as measured by the formation of DNA DSBs in both donor and recipient cells. In vivo, results of biodistribution indicated that tumour uptake of 213Bi-16F12 during BIP RIT was higher than after IP RIT. The tumour-to-blood uptake ratio was 9 versus 3, respectively, one hour post RIT while it decreased down to 3 and 1, respectively, three hours post-RIT. Finally, a similar delay in tumor growth was observed in mice treated with 12.95 MBq of 213Bi-16F12 following IP-RIT or treated with 37 MBq using BIP-RIT. Conclusions: We confirmed in vitro the therapeutic efficacy of newly developed 16F12 213Bi-mAbs. in vivo results indicate that similar therapeutic efficacy and lower toxicity could be obtained with BIP-RIT compared with IP-RIT. BIP-RIT could be a new tool in the therapy of peritoneal carcinomatosis. URI: Authors: LADJOHOUNLOU Riad PICHARD Alexandre DEHAYES E BOUDOUSQ Vincent BRUCHERTSEIFER Frank MORGENSTERN Alfred NAVARRO-TEULON Isabelle POUGET Jean-Pierre Publication Year: 2016 Science Areas: Health and consumer protection [1]European Journal of Nuclear Medicine and Molecular Imaging Volume 43, Supplement 1 10.1007/s00259-016-3484-4 This supplement was not sponsored by outside commercial interests. It was funded entirely by the association’s own resources. ABSTRACT DOI 10.1007/s00259-016-3484-4 Eur J Nucl Med Mol Imaging (2016) 43 (Suppl 1):S1–S734Background: In the context of the EORTC LungTech trial, a QA procedure including a PET/CT credentialing has been developed. This procedure will ultimately allow us to pool data from 23 institutions with the overall goal of investigating the impact of tumour motion on quantification. As no standardized procedure exists under respiratory conditions, we investigated the variability of 14 SUV metrics to assess their robustness over respiratory noise. Methods: The customized CIRS-008A phantom was scanned at 13 institutions. This phantom consists of a 18 cm long body, a rod attached to a motion actuator, and a sphere of either 1.5 or 2.5cm diameters. Body, rods and spheres were filled with homogeneous 18FDG solutions representative of activity concentrations in mediastinum, lung and tumour for a 70kg patient. Three respiratory patterns with peak-to-peak amplitudes and periods of 15mm/3sec, 15mm/6sec and 25mm/4sec were tested. Prior to scanning in respiratory condition, a 3D static PET/CT was acquired as reference. During motion, images were acquired using 3D or 4D gated PET(average image) according to institutional settings. 14 SUV(mean) metrics were obtained per acquisition varying VOI/ ROI shape and location. Three ROIs and three VOIs with respective radii of 0.5, 0.6 and 0.8cm were investigated. These ROIs/VOIs were first centred on the maximum activity voxel; a second analysis was made changing the location from the voxel to the region (ROI5voxels) or the volume (VOI7voxels) with the maximum value. Two additional VOIs were defined as 3D isocontours respectively at 70% and 50% of the maximum voxel value. The SUV metrics were normalized by the corresponding 3D static SUV. Converting to recovery coefficients (RC) allowed us to pool data from all institutions, while maintaining focus solely on motion. For each RC from each motion setting we calculated the mean over institutions, we then looked at the standard deviation (Sd) and spread of each averaged RC over each motion setting (formula [1], [2], Figure1). Results: For the institutions visited we found that RCVOI70% and RCVOI50%, yielded over the 14 metrics the lowest variability to motion with Sd of 0.04 and 0.03 respectively. The RCs based on ROIs/VOIs centered on a single voxel were less impacted by motion (Sd: 0.08) compared to region RCs (Sd: 0.14). The averaged Sd over the RCs based on VOIs and ROIs was 0.12 and 0.11 respectively. Conclusion: Quantification over breathing types depends on ROI/VOI definition. Variables based on SUV max thresholds were found the most robust against respiratory noise.
European Journal of Nuclear Medicine and Molecular Imaging | 2016
Annette Aamand Lund; Mie Holm Vilstrup; Kirsten Marie Jochumsen; Poul Flemming Høilund-Carlsen; Søren Hess
Hypothesis: We assessed in in vitro and in vivo models of ovarian cancer the therapeutic efficacy of 16F12 mAbs directed against Mullerian Inhibiting Substance type II receptor (MISRII) radiolabeled with 213Bi Methods: In vitro, both direct and bystander cytotoxic effects were measured using clonogenic assay and standard medium transfer protocol. Typically, Clonogenic survival was assessed in SK-OV-3 donor cells expressing MISRII and exposed for 90 min to 0.06-0.5MBq/mL of 16F12 213Bi-mAbs. Bystander cytotoxicity was measured in recipient cells grown in non-radioactive culture medium preconditioned for 2 hours in the presence of donor cells. DNA double strand breaks (DSBs) were measured in both donor and recipients cells using immunofluorescent detection of gamma-H2AX and of 53BP1. In vivo we explored in athymic nude mice bearing intraperitoneal (IP) MISRII-expressing AN3CA tumor the therapeutic efficacy of brief-intraperitoneal radioimmunotherapy (BIP-RIT, 12.95 37 MBq; 37MBq/mg) or of intraperitoneal RIT (IP-RIT; 2.96-12.95 MBq; 37MBq/mg) using 213Bi-16F12. BIP-RIT mimics hyperthermic intraperitoneal chemotherapy as used in clinic. It consists of intraperitoneal injection of high activities of radiolabeled mAbs followed 30 min later by wash of the peritoneal cavity with saline solution to remove unbound radioactivity. The biodistribution of radiolabeled antibodies following IP-RIT (12.95 MBq; 37MBq/mg) or BIP-RIT (37 MBq; 37MBq/mg) was assessed. Results: In vitro we showed in donor cells a strong direct cytotoxicity of 16F12 213Bi-mAbs. A significant bystander cytotoxicity was also measured in recipient cells. Genotoxic effects were also demonstrated as measured by the formation of DNA DSBs in both donor and recipient cells. In vivo, results of biodistribution indicated that tumour uptake of 213Bi-16F12 during BIP RIT was higher than after IP RIT. The tumour-to-blood uptake ratio was 9 versus 3, respectively, one hour post RIT while it decreased down to 3 and 1, respectively, three hours post-RIT. Finally, a similar delay in tumor growth was observed in mice treated with 12.95 MBq of 213Bi-16F12 following IP-RIT or treated with 37 MBq using BIP-RIT. Conclusions: We confirmed in vitro the therapeutic efficacy of newly developed 16F12 213Bi-mAbs. in vivo results indicate that similar therapeutic efficacy and lower toxicity could be obtained with BIP-RIT compared with IP-RIT. BIP-RIT could be a new tool in the therapy of peritoneal carcinomatosis. URI: Authors: LADJOHOUNLOU Riad PICHARD Alexandre DEHAYES E BOUDOUSQ Vincent BRUCHERTSEIFER Frank MORGENSTERN Alfred NAVARRO-TEULON Isabelle POUGET Jean-Pierre Publication Year: 2016 Science Areas: Health and consumer protection [1]European Journal of Nuclear Medicine and Molecular Imaging Volume 43, Supplement 1 10.1007/s00259-016-3484-4 This supplement was not sponsored by outside commercial interests. It was funded entirely by the association’s own resources. ABSTRACT DOI 10.1007/s00259-016-3484-4 Eur J Nucl Med Mol Imaging (2016) 43 (Suppl 1):S1–S734Background: In the context of the EORTC LungTech trial, a QA procedure including a PET/CT credentialing has been developed. This procedure will ultimately allow us to pool data from 23 institutions with the overall goal of investigating the impact of tumour motion on quantification. As no standardized procedure exists under respiratory conditions, we investigated the variability of 14 SUV metrics to assess their robustness over respiratory noise. Methods: The customized CIRS-008A phantom was scanned at 13 institutions. This phantom consists of a 18 cm long body, a rod attached to a motion actuator, and a sphere of either 1.5 or 2.5cm diameters. Body, rods and spheres were filled with homogeneous 18FDG solutions representative of activity concentrations in mediastinum, lung and tumour for a 70kg patient. Three respiratory patterns with peak-to-peak amplitudes and periods of 15mm/3sec, 15mm/6sec and 25mm/4sec were tested. Prior to scanning in respiratory condition, a 3D static PET/CT was acquired as reference. During motion, images were acquired using 3D or 4D gated PET(average image) according to institutional settings. 14 SUV(mean) metrics were obtained per acquisition varying VOI/ ROI shape and location. Three ROIs and three VOIs with respective radii of 0.5, 0.6 and 0.8cm were investigated. These ROIs/VOIs were first centred on the maximum activity voxel; a second analysis was made changing the location from the voxel to the region (ROI5voxels) or the volume (VOI7voxels) with the maximum value. Two additional VOIs were defined as 3D isocontours respectively at 70% and 50% of the maximum voxel value. The SUV metrics were normalized by the corresponding 3D static SUV. Converting to recovery coefficients (RC) allowed us to pool data from all institutions, while maintaining focus solely on motion. For each RC from each motion setting we calculated the mean over institutions, we then looked at the standard deviation (Sd) and spread of each averaged RC over each motion setting (formula [1], [2], Figure1). Results: For the institutions visited we found that RCVOI70% and RCVOI50%, yielded over the 14 metrics the lowest variability to motion with Sd of 0.04 and 0.03 respectively. The RCs based on ROIs/VOIs centered on a single voxel were less impacted by motion (Sd: 0.08) compared to region RCs (Sd: 0.14). The averaged Sd over the RCs based on VOIs and ROIs was 0.12 and 0.11 respectively. Conclusion: Quantification over breathing types depends on ROI/VOI definition. Variables based on SUV max thresholds were found the most robust against respiratory noise.
Pet Clinics | 2014
Mie Holm Vilstrup; Drew A. Torigian
[(18)F]Fluorodeoxyglucose (FDG) PET is a robust quantitative molecular imaging technique that complements available structural imaging techniques for the detection and characterization of malignancy. This article provides an overview of the utility and applications of FDG-PET for the evaluation of patients with thoracic malignancy.
Journal of Nuclear Cardiology | 2014
Björn Alexander Blomberg; Anders Thomassen; Richard A. P. Takx; Mie Holm Vilstrup; Søren Hess; Anne Lerberg Nielsen; Axel Cosmus Pyndt Diederichsen; Hans Mickley; Abass Alavi; Poul Flemming Høilund-Carlsen