Miguel A. C. Teixeira
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel A. C. Teixeira.
Journal of Fluid Mechanics | 2002
Miguel A. C. Teixeira; Stephen E. Belcher
A rapid-distortion model is developed to investigate the interaction of weak turbulence with a monochromatic irrotational surface water wave. The model is applicable when the orbital velocity of the wave is larger than the turbulence intensity, and when the slope of the wave is suciently high that the straining of the turbulence by the wave dominates over the straining of the turbulence by itself. The turbulence suers two distortions. Firstly, vorticity in the turbulence is modulated by the wave orbital motions, which leads to the streamwise Reynolds stress attaining maxima at the wave crests and minima at the wave troughs; the Reynolds stress normal to the free surface develops minima at the wave crests and maxima at the troughs. Secondly, over several wave cycles the Stokes drift associated with the wave tilts vertical vorticity into the horizontal direction, subsequently stretching it into elongated streamwise vortices, which come to dominate the flow. These results are shown to be strikingly dierent from turbulence distorted by a mean shear flow, when ‘streaky structures’ of high and low streamwise velocity fluctuations develop. It is shown that, in the case of distortion by a mean shear flow, the tendency for the mean shear to produce streamwise vortices by distortion of the turbulent vorticity is largely cancelled by a distortion of the mean vorticity by the turbulent fluctuations. This latter process is absent in distortion by Stokes drift, since there is then no mean vorticity. The components of the Reynolds stress and the integral length scales computed from turbulence distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulence reported by McWilliams, Sullivan & Moeng (1997). Hence we suggest that turbulent vorticity in the upper ocean, such as produced by breaking waves, may help to provide the initial seeds for Langmuir circulations, thereby complementing the shear-flow instability mechanism developed by Craik & Leibovich (1976). The tilting of the vertical vorticity into the horizontal by the Stokes drift tends also to produce a shear stress that does work against the mean straining associated with the wave orbital motions. The turbulent kinetic energy then increases at the expense of energy in the wave. Hence the wave decays. An expression for the wave attenuation rate is obtained by scaling the equation for the wave energy, and is found to be broadly consistent with available laboratory data.
Journal of the Atmospheric Sciences | 2004
Miguel A. C. Teixeira; Pedro M. A. Miranda; Maria Antónia Valente
Abstract An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri−1, decreasing as Ri decreas...
Journal of Fluid Mechanics | 2000
Miguel A. C. Teixeira; Stephen E. Belcher
The rapid-distortion model of Hunt & Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface. The model is shown to be formally valid provided two conditions are satised. The rst condition is that time is short compared with the decorrelation time of the energy-containing eddies, so that nonlinear processes can be neglected. The second condition is that the viscous layer near the boundary, where tangential motions adjust to the boundary condition, is thin compared with the scales of the smallest eddies. The viscous layer can then be treated using thin-boundary-layer methods. Given these conditions, the distorted turbulence near the boundary is related to the undistorted turbulence, and thence proles of turbulence dissipation rate near the two types of boundary are calculated and shown to agree extremely well with proles obtained by Perot & Moin (1993) by direct numerical simulation. The dissipation rates are higher near a solid wall than in the bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the viscous layer. In contrast, the weaker constraint of no stress at a free surface leads to the dissipation rate close to a free surface actually being smaller than in the bulk of the flow. This explains why tangential velocity fluctuations parallel to a free surface are so large. In addition we show that it is the adjustment of the large energy-containing eddies across the viscous layer that controls the dissipation rate, which explains why rapid-distortion theory can give quantitatively accurate values for the dissipation rate. We also nd that the dissipation rate obtained from the model evaluated at the time when the model is expected to fail actually yields useful estimates of the dissipation obtained from the direct numerical simulation at times when the nonlinear processes are signicant. We conclude that the main role of nonlinear processes is to arrest growth by linear processes of the viscous layer after about one large-eddy turnover time.
Journal of the Atmospheric Sciences | 2009
Miguel A. C. Teixeira; Pedro M. A. Miranda
Abstract The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergenc...
Journal of the Atmospheric Sciences | 2008
Miguel A. C. Teixeira; Pedro M. A. Miranda; José Luis Argaín
Abstract Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from th...
Journal of the Atmospheric Sciences | 2004
Miguel A. C. Teixeira; Pedro M. A. Miranda
The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.
Journal of the Atmospheric Sciences | 2013
Miguel A. C. Teixeira; José Luis Argaín; Pedro M. A. Miranda
AbstractThe drag produced by 2D orographic gravity waves trapped at a temperature inversion and waves propagating in the stably stratified layer existing above are explicitly calculated using linear theory, for a two-layer atmosphere with neutral static stability near the surface, mimicking a well-mixed boundary layer. For realistic values of the flow parameters, trapped-lee-wave drag, which is given by a closed analytical expression, is comparable to propagating-wave drag, especially in moderately to strongly nonhydrostatic conditions. In resonant flow, both drag components substantially exceed the single-layer hydrostatic drag estimate used in most parameterization schemes. Both drag components are optimally amplified for a relatively low-level inversion and Froude numbers Fr ≈ 1. While propagating-wave drag is maximized for approximately hydrostatic flow, trapped-lee-wave drag is maximized for l2a = O(1) (where l2 is the Scorer parameter in the stable layer and a is the mountain width). This roughly ha...
Frontiers of Physics in China | 2014
Miguel A. C. Teixeira
The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations) to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Langmuir | 2015
Miguel A. C. Teixeira; Steve Arscott; Simon Cox; P. I. C. Teixeira
We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.
Flow Turbulence and Combustion | 1996
Miguel A. C. Teixeira; Pedro M. A. Miranda
The behaviour of stationary, non-passive plumes can be simulated in a reasonably simple and accurate way by integral models. One of the key requirements of these models, but also one of their less well-founded aspects, is the entrainment assumption, which parameterizes turbulent mixing between the plume and the environment. The entrainment assumption developed by Schatzmann and adjusted to a set of experimental results requires four constants and an ad hoc hypothesis to eliminate undesirable terms. With this assumption, Schatzmann’s model exhibits numerical instability for certain cases of plumes with small velocity excesses, due to very fast radius growth. The purpose of this paper is to present an alternative entrainment assumption based on a first-order turbulence closure, which only requires two adjustable constants and seems to solve this problem. The asymptotic behaviour of the new formulation is studied and compared to previous ones. The validation tests presented by Schatzmann are repeated and it is found that the new formulation not only eliminates numerical instability but also predicts more plausible growth rates for jets in co-flowing streams.