Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel A. Esteban is active.

Publication


Featured researches published by Miguel A. Esteban.


Cell Stem Cell | 2010

A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts

Ronghui Li; Jialiang Liang; Su Ni; Ting Zhou; Xiaobing Qing; Huapeng Li; Wenzhi He; Jiekai Chen; Feng Li; Qiang Zhuang; Baoming Qin; Jianyong Xu; Wen Li; Jiayin Yang; Yi Gan; Dajiang Qin; Shipeng Feng; Hong Song; Dongshan Yang; Biliang Zhang; Lingwen Zeng; Liangxue Lai; Miguel A. Esteban; Duanqing Pei

Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:


Cell Stem Cell | 2010

Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells

Miguel A. Esteban; Tao Wang; Baoming Qin; Jiayin Yang; Dajiang Qin; Jinglei Cai; Wen Li; Zhihui Weng; Jiekai Chen; Su Ni; Keshi Chen; Yuan Li; Xiaopeng Liu; Jianyong Xu; Shiqiang Zhang; Feng Li; Wenzhi He; Krystyna Labuda; Yancheng Song; Anja Peterbauer; Susanne Wolbank; Heinz Redl; Mei Zhong; Daozhang Cai; Lingwen Zeng; Duanqing Pei

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.


Journal of Biological Chemistry | 2009

Generation of induced pluripotent stem cell lines from tibetan miniature pig

Miguel A. Esteban; Jianyong Xu; Jiayin Yang; Meixiu Peng; Dajiang Qin; Wen Li; Zhuoxin Jiang; Jiekai Chen; Kang Deng; Mei Zhong; Jinglei Cai; Liangxue Lai; Duanqing Pei

Induced pluripotent stem cell (iPS) technology appears to be a general strategy to generate pluripotent stem cells from any given mammalian species. So far, iPS cells have been reported for mouse, human, rat, and monkey. These four species have also established embryonic stem cell (ESC) lines that serve as the gold standard for pluripotency comparisons. Attempts have been made to generate porcine ESC by various means without success. Here we report the successful generation of pluripotent stem cells from fibroblasts isolated from the Tibetan miniature pig using a modified iPS protocol. The resulting iPS cell lines more closely resemble human ESC than cells from other species, have normal karyotype, stain positive for alkaline phosphatase, express high levels of ESC-like markers (Nanog, Rex1, Lin28, and SSEA4), and can differentiate into teratomas composed of the three germ layers. Because porcine physiology closely resembles human, the iPS cells reported here provide an attractive model to study certain human diseases or assess therapeutic applications of iPS in a large animal model.


Cell Stem Cell | 2011

The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner

Tao Wang; Keshi Chen; Xiaoming Zeng; Jianguo Yang; Yun Wu; Xi Shi; Baoming Qin; Lingwen Zeng; Miguel A. Esteban; Guangjin Pan; Duanqing Pei

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.


Nature Protocols | 2012

Generation of human induced pluripotent stem cells from urine samples

Ting Zhou; Christina Benda; Sarah Dunzinger; Yinghua Huang; Jenny Cy Ho; Jiayin Yang; Yu Wang; Ya Zhang; Qiang Zhuang; Yanhua Li; Xichen Bao; Hung-Fat Tse; Johannes Grillari; Regina Grillari-Voglauer; Duanqing Pei; Miguel A. Esteban

Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet, acquiring donor cells is, in most instances, an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances, as the isolation of urinary cells is simple (30 ml of urine are sufficient), cost-effective and universal (can be applied to any age, gender and race). Moreover, the entire procedure is reasonably quick—around 2 weeks for the urinary cell culture and 3–4 weeks for the reprogramming—and the yield of iPSC colonies is generally high—up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential, and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.


Cancer Research | 2006

Regulation of E-cadherin Expression by VHL and Hypoxia-Inducible Factor

Miguel A. Esteban; Maxine Tran; Sarah K. Harten; Peter Hill; Maria C. Castellanos; Ashish Chandra; Raju Raval; Tim O'Brien; Patrick H. Maxwell

Mutations in von Hippel-Lindau tumor suppressor gene (VHL) underlie the VHL hereditary cancer syndrome and also occur in most sporadic clear cell renal cell cancers (CCRCC). Currently, the mechanism(s) by which VHL loss of function promotes tumor development in the kidney are not fully elucidated. Here, we show that VHL inactivation in precancerous lesions in kidneys from patients with VHL disease correlates with marked down-regulation of the intercellular adhesion molecule E-cadherin. Moreover, in VHL-defective cell lines (RCC4 and RCC10) derived from sporadic CCRCC, reexpression of VHL was found to restore E-cadherin expression. The product of the VHL gene has multiple reported functions, the best characterized of which is its role as the recognition component of an ubiquitin E3 ligase complex responsible for mediating oxygen-dependent destruction of hypoxia-inducible factor-alpha (HIF-alpha) subunits. We show that HIF activation is necessary and sufficient to suppress E-cadherin in renal cancer cells. Given the fundamental role of E-cadherin in controlling epithelial behavior, our findings give insight into how VHL inactivation/HIF activation may lead to kidney cancer and also indicate a mechanism by which reduced oxygenation could alter E-cadherin expression in other cancers and influence normal homeostasis in other epithelia.


Journal of Biological Chemistry | 2011

Microrna cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition

Baojian Liao; Xichen Bao; Longqi Liu; Shipeng Feng; Athanasios Zovoilis; Wenbo Liu; Yanting Xue; Jie Cai; Xiangpeng Guo; Baoming Qin; Ruosi Zhang; Jiayan Wu; Liangxue Lai; Maikun Teng; Liwen Niu; Biliang Zhang; Miguel A. Esteban; Duanqing Pei

MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a–363 and in particular 302–367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302–367 targeted TGFβ receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.


Journal of The American Society of Nephrology | 2011

Generation of induced pluripotent stem cells from urine

Ting Zhou; Christina Benda; Sarah Duzinger; Yinghua Huang; Xingyan Li; Yanhua Li; Xiangpeng Guo; Guokun Cao; Shen Chen; Lili Hao; Ys Chan; Kwong-Man Ng; Jenny Cy Ho; Matthias Wieser; Jiayan Wu; Heinz Redl; Hung-Fat Tse; Johannes Grillari; Regina Grillari-Voglauer; Duanqing Pei; Miguel A. Esteban

Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.


Journal of Biological Chemistry | 2008

Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells

Xiaofei Zhang; Juan Zhang; Tao Wang; Miguel A. Esteban; Duanqing Pei

The genetic program of embryonic stem (ES) cells is orchestrated by a core of transcription factors that has OCT4, SOX2, and NANOG as master regulators. Protein levels of these core factors are tightly controlled by autoregulatory and feed-forward transcriptional mechanisms in order to prevent early differentiation. Recent studies have shown that knockdown of Esrrb (estrogen-related-receptor β), a member of the nuclear orphan receptor family, induces differentiation of mouse ES cells cultured in the presence of leukemia inhibitory factor. It was however not known how knocking down Esrrb exerts this effect. Herein we have identified two ESRRB binding sites in the proximal 5′-untranslated region of the mouse Oct4 gene, one of which is in close proximity to a NANOG binding site. Both ESRRB and NANOG are necessary for maintaining the activity of this promoter in ES cell lines. We have also demonstrated that the two transcription factors interact through their DNA binding domains. This interaction reciprocally modulates their transcriptional activities and may be important to fine-tune ES cell pluripotency. Supporting all of these data, stable transfection of Esrrb in ES cell lines proved sufficient to sustain their characteristics in the absence of leukemia-inhibitory factor. In summary, our experiments help to understand how Esrrb coordinates with Nanog and Oct4 to activate the internal machinery of ES cells.


Journal of Clinical Investigation | 2008

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice

James Cantley; Colin Selman; Deepa Shukla; Andrey Y. Abramov; Frauke Forstreuter; Miguel A. Esteban; Marc Claret; Steven Lingard; Melanie Clements; Sarah K. Harten; Rachel L. Batterham; Pedro Luis Herrera; Shanta J. Persaud; Michael R. Duchen; Patrick H. Maxwell; Dominic J. Withers

Defective insulin secretion in response to glucose is an important component of the beta cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel-Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic beta cells, we generated mice lacking Vhl in pancreatic beta cells (betaVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in beta cells or the pancreas altered expression of genes involved in beta cell function, including those involved in glucose transport and glycolysis, and isolated betaVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1alpha expression, and deletion of Hif1a in Vhl-deficient beta cells restored GSIS. Consistent with this, expression of activated Hif-1alpha in a mouse beta cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to beta cell dysfunction.

Collaboration


Dive into the Miguel A. Esteban's collaboration.

Top Co-Authors

Avatar

Duanqing Pei

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xichen Bao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiayin Yang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Hung-Fat Tse

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Baoming Qin

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Jianyong Xu

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Benda

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhuang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xiangpeng Guo

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge