Miguel Alaminos
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Alaminos.
Nature Genetics | 2006
Santiago Ropero; Mario F. Fraga; Esteban Ballestar; Richard Hamelin; Hiroyuki Yamamoto; Manuel Boix-Chornet; Rosalia Caballero; Miguel Alaminos; Fernando Setien; Maria F. Paz; Michel Herranz; José Palacios; Diego Arango; Torben F. Ørntoft; Lauri A. Aaltonen; Simó Schwartz; Manel Esteller
Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals.
Epigenetics | 2009
Ramon Martinez; José I. Martín-Subero; Veit Rohde; Miguel Alaminos; Agustín F. Fernández; Santiago Ropero; Gabriele Schackert; Manel Esteller
Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. The presence of epigenetic lesions, like hypermethylation of known tumor suppressor genes such as MGMT, has been widely described in GBM, but to our knowledge, a genome-wide profile of DNA methylation changes in these lethal tumors is not yet available. In the present analysis, we have quantified the DNA methylation level of 1,505 CpG dinucleotides (807 genes) in 87 consecutive GBMs using universal BeadArrays. Supervised cluster analyses identified 25 and seven genes that were respectively hypermethylated and hypomethylated in more than 20% of the cases studied. The most frequently hypermethylated genes were HOXA11, CD81, PRKCDBP, TES, MEST, TNFRSF10A and FZD9, being involved in more than half of the cases. Studying the biological features of hypermethylated genes, we found that the group of genes hypermethylated in GBM was highly enriched (41%, P
Proceedings of the National Academy of Sciences of the United States of America | 2009
María Berdasco; Santiago Ropero; Fernando Setien; Mario F. Fraga; Pablo Lapunzina; Régine Losson; Miguel Alaminos; Nai-Kong Cheung; Nazneen Rahman; Manel Esteller
Sotos syndrome is an autosomal dominant condition characterized by overgrowth resulting in tall stature and macrocephaly, together with an increased risk of tumorigenesis. The disease is caused by loss-of-function mutations and deletions of the nuclear receptor SET domain containing protein-1 (NSD1) gene, which encodes a histone methyltransferase involved in chromatin regulation. However, despite its causal role in Sotos syndrome and the typical accelerated growth of these patients, little is known about the putative contribution of NSD1 to human sporadic malignancies. Here, we report that NSD1 function is abrogated in human neuroblastoma and glioma cells by transcriptional silencing associated with CpG island-promoter hypermethylation. We also demonstrate that the epigenetic inactivation of NSD1 in transformed cells leads to the specifically diminished methylation of the histone lysine residues H4-K20 and H3-K36. The described phenotype is also observed in Sotos syndrome patients with NSD1 genetic disruption. Expression microarray data from NSD1-depleted cells, followed by ChIP analysis, revealed that the oncogene MEIS1 is one of the main NSD1 targets in neuroblastoma. Furthermore, we show that the restoration of NSD1 expression induces tumor suppressor-like features, such as reduced colony formation density and inhibition of cellular growth. Screening a large collection of different tumor types revealed that NSD1 CpG island hypermethylation was a common event in neuroblastomas and gliomas. Most importantly, NSD1 hypermethylation was a predictor of poor outcome in high-risk neuroblastoma. These findings highlight the importance of NSD1 epigenetic inactivation in neuroblastoma and glioma that leads to a disrupted histone methylation landscape and might have a translational value as a prognostic marker.
Cancer Research | 2005
Miguel Alaminos; Veronica Davalos; Santiago Ropero; Fernando Setien; Maria F. Paz; Michel Herranz; Mario F. Fraga; Jaume Mora; Nai-Kong V. Cheung; William L. Gerald; Manel Esteller
The presence of common genomic deletions in the 19q13 chromosomal region in neuroblastomas and gliomas strongly suggests the presence of a putative tumor suppressor gene for these neoplasms in this region that, despite much effort, has not yet been identified. In an attempt to address this issue, we compared the expression profile of 89 neuroblastoma tumors with that of benign ganglioneuromas by microarray analysis. Probe sets (637 of 62,839) were significantly down-regulated in neuroblastoma tumors, including, most importantly, a gene located at 19q13.3: the epithelial membrane protein 3 (EMP3), a myelin-related gene involved in cell proliferation and cell-cell interactions. We found that EMP3 undergoes hypermethylation-mediated transcriptional silencing in neuroblastoma and glioma cancer cell lines, whereas the use of the demethylating agent 5-aza-2-deoxycytidine restores EMP3 gene expression. Furthermore, the reintroduction of EMP3 into neuroblastoma cell lines displaying methylation-dependent silencing of EMP3 induces tumor suppressor-like features, such as reduced colony formation density and tumor growth in nude mouse xenograft models. Screening a large collection of human primary neuroblastomas (n = 116) and gliomas (n = 41), we observed that EMP3 CpG island hypermethylation was present in 24% and 39% of these tumor types, respectively. Furthermore, the detection of EMP3 hypermethylation in neuroblastoma could be clinically relevant because it was associated with poor survival after the first 2 years of onset of the disease (Kaplan-Meier; P = 0.03) and death of disease (Kendall tau, P = 0.03; r = 0.19). Thus, EMP3 is a good candidate for being the long-sought tumor suppressor gene located at 19q13 in gliomas and neuroblastomas.
PLOS ONE | 2008
María Berdasco; Rubén Alcázar; María Victoria García-Ortiz; Esteban Ballestar; Agustín F. Fernández; Teresa Roldán-Arjona; Antonio F. Tiburcio; Teresa Altabella; Nicolas Buisine; Hadi Quesneville; Antoine Baudry; Loïc Lepiniec; Miguel Alaminos; Roberto Rodríguez; Alan Lloyd; Vincent Colot; Judith Bender; María Jesús Cañal; Manel Esteller; Mario F. Fraga
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.
PLOS ONE | 2008
Rocío G. Urdinguio; Lidia Lopez-Serra; Pilar Lopez-Nieva; Miguel Alaminos; Ramón Díaz-Uriarte; Agustín F. Fernández; Manel Esteller
Background Rett syndrome (RTT) is a complex neurological disorder that is one of the most frequent causes of mental retardation in women. A great landmark in research in this field was the discovery of a relationship between the disease and the presence of mutations in the gene that codes for the methyl-CpG binding protein 2 (MeCP2). Currently, MeCP2 is thought to act as a transcriptional repressor that couples DNA methylation and transcriptional silencing. The present study aimed to identify new target genes regulated by Mecp2 in a mouse model of RTT. Methodology/Principal Findings We have compared the gene expression profiles of wild type (WT) and Mecp2-null (KO) mice in three regions of the brain (cortex, midbrain, and cerebellum) by using cDNA microarrays. The results obtained were confirmed by quantitative real-time PCR. Subsequent chromatin immunoprecipitation assays revealed seven direct target genes of Mecp2 bound in vivo (Fkbp5, Mobp, Plagl1, Ddc, Mllt2h, Eya2, and S100a9), and three overexpressed genes due to an indirect effect of a lack of Mecp2 (Irak1, Prodh and Dlk1). The regions bound by Mecp2 were always methylated, suggesting the involvement of the methyl-CpG binding domain of the protein in the mechanism of interaction. Conclusions We identified new genes that are overexpressed in Mecp2-KO mice and are excellent candidate genes for involvement in various features of the neurological disease. Our results demonstrate new targets of MeCP2 and provide us with a better understanding of the underlying mechanisms of RTT.
PLOS ONE | 2008
Vincenzo Calvanese; Angélica Horrillo; Abdelkrim Hmadcha; Beatriz Suarez-Alvarez; Agustín F. Fernández; Ester Lara; Sara Casado; Pablo Menendez; Clara Bueno; Javier García-Castro; Ruth Rubio; Pablo Lapunzina; Miguel Alaminos; Lodovica Borghese; Stefanie Terstegge; Neil J. Harrison; Harry Moore; Oliver Brüstle; Carlos López-Larrea; Peter W. Andrews; Bernat Soria; Manel Esteller; Mario F. Fraga
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.
Human Genetics | 2005
Esteban Ballestar; Santiago Ropero; Miguel Alaminos; Judith Armstrong; Fernando Setien; Ruben Agrelo; Mario F. Fraga; Michel Herranz; Sonia Avila; Mercedes Pineda; Eugenia Monros; Manel Esteller
Rett syndrome (RTT), the second most common cause of mental retardation in females, has been associated with mutations in MeCP2, the archetypical member of the methyl-CpG binding domain (MBD) family of proteins. MeCP2 additionally possesses a transcriptional repression domain (TRD). We have compared the gene expression profiles of RTT- and normal female-derived lymphoblastoid cells by using cDNA microarrays. Clustering analysis allowed the classification of RTT patients according to the localization of the MeCP2 mutation (MBD or TRD) and those with clinically diagnosed RTT but without detectable MeCP2 mutations. Numerous genes were observed to be overexpressed in RTT patients compared with control samples, including excellent candidate genes for neurodevelopmental disease. Chromatin immunoprecipitation analysis confirmed that binding of MeCP2 to corresponding promoter CpG islands was lost in RTT-derived cells harboring a mutation in the region of the MECP2 gene encoding the MBD. Bisulfite genomic sequencing demonstrated that the majority of MeCP2 binding occurred in DNA sequences with methylation-associated silencing. Most importantly, the finding that these genes are also methylated and bound by MeCP2 in neuron-related cells suggests a role in this neurodevelopmental disease. Our results provide new data of the underlying mechanisms of RTT and unveil novel targets of MeCP2-mediated gene repression.
Journal of Neural Engineering | 2013
Víctor Carriel; Juan Garrido-Gómez; Pedro Hernández-Cortés; Ingrid Garzón; Salomé García-García; José Antonio Sáez-Moreno; María del Carmen Sánchez-Quevedo; Antonio Campos; Miguel Alaminos
OBJECTIVE The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. APPROACH A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. MAIN RESULTS Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. SIGNIFICANCE Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.
Journal of Dentistry | 2010
Manuel Toledano; Renato Nieto-Aguilar; Raquel Osorio; Antonio Campos; Estrella Osorio; Franklin R. Tay; Miguel Alaminos
OBJECTIVE To examine the differential expression of matrix metalloproteinase-2 (MMP-2) in human coronal and radicular sound and carious dentine using combined trichrome staining technique and immunofluorescence approach. METHODS Freshly extracted human premolars were fixed with formaldehyde, demineralised with 10% EDTA (pH 7.4), dehydrated and sectioned for light and immunofluorescence microscopy. Half of the sections were stained with Massons trichrome and examined with light microscopy to identify regions in the coronal and radicular parts of the teeth that contained sound, caries-affected and caries-infected dentine. The rest of the sections were hybridized with anti-mouse MMP-2 primary antibody and FITC-conjugated secondary antibody. Immunofluorescence of the FITC that was indicative of the distribution of the MMP-2 in coronal and radicular dentine was analysed by fluorescence light microscopy. RESULTS Trichrome staining revealed a green zone of unaffected sound dentin, red irregular regions of caries-infected dentine and pink regions of caries-affected dentine. Immunofluorescence signals that were indicative of MMP expression were the lowest in sound dentine and most intense in the caries-infected dentine. Caries-affected dentine showed intermediate immunoreactivity. The variations in the intensities of immunofluorescence corresponded well with the distribution of caries-infected and caries-affected dentine in the trichrome-stained sections, for both coronal and radicular dentine. CONCLUSION Caries stimulates MMP-2 expression, resulting in the differential expression of this protease in sound, caries-affected and caries-infected dentine. The more intense MMP-2 expression in caries-affected dentine compared with sound dentine may imply more rapid hybrid layer degradation when caries-affected dentine is employed as the substrate for bonded restorations.