Miguel Alcaide
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Alcaide.
Molecular Biology and Evolution | 2011
Miguel Alcaide; Scott V. Edwards
Toll-like receptors (TLR) are membrane-bound sensors of the innate immune system that recognize invariant and distinctive molecular features of invading microbes and are also essential for initiating adaptive immunity in vertebrates. The genetic variation at TLR genes has been directly related to differential pathogen outcomes in humans and livestock. Nonetheless, new insights about the impact of TLRs polymorphism on the evolutionary ecology of infectious diseases can be gained through the investigation of additional vertebrate groups not yet investigated in detail. In this study, we have conducted the first characterization of the entire TLR multigene family (N = 10 genes) in non-model avian species. Using primers targeting conserved coding regions, we aimed at amplifying large segments of the extracellular domains (275-435 aa) involved in pathogen recognition across seven phylogenetically diverse bird species. Our analyses suggest avian TLRs are dominated by stabilizing selection, suggesting that slow rates of nonsynonymous substitution help preserve biological function. Overall, mean values of ω (= d(n)/d(s)) at each TLR locus ranged from 0.196 to 0.517. However, we also found patterns of positive selection acting on specific amino acid sites that could be linked to species-specific differences in pathogen-associated molecular pattern recognition. Only 39 of 2,875 (∼1.35%) of the codons analyzed exhibited significant patterns of positive selection. At least one half of these positively selected codons can be mapped to putative ligand-binding regions, as suggested by crystallographic structures of TLRs and their ligands and mutagenic analyses. We also surveyed TLR polymorphism in wild populations of two bird species, the Lesser Kestrel Falco naumanni and the House Finch Carpodacus mexicanus. In general, avian TLRs displayed low to moderate single nucleotide polymorphism levels and an excess of silent nucleotide substitutions, but also conspicuous instances of positive directional selection. In particular, TLR5 and TLR15 exhibited the highest degree of genetic polymorphism and the highest occurrence of nonconservative amino acid substitutions. This study provides critical primers and a first look at the evolutionary patterns and implications of TLR polymorphism in non-model avian species and extends the list of candidate loci for avian eco-immunogenetics beyond the widely employed genes of the Major Histocompatibility Complex (MHC).
PLOS ONE | 2012
Joaquín Muñoz; Santiago Ruiz; Ramón C. Soriguer; Miguel Alcaide; Duarte S. Viana; David Roiz; Ana Vázquez; Jordi Figuerola
Background Mosquito feeding behaviour determines the degree of vector–host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission. Methodology/Principal Findings We identified the origin of blood meals in five mosquito species from three different wetlands in SW Spain. All mosquito species analysed fed with different frequencies on birds, mammals and reptiles. Both ‘mosquito species’ and ‘locality’ explained a similar amount of variance in the occurrence of avian blood meals. However, ‘season of year’ was the main factor explaining the presence of human blood meals. The differences in diet resulted in a marked spatial heterogeneity in the estimated WNV transmission risk. Culex perexiguus, Cx. modestus and Cx. pipiens were the main mosquito species involved in WNV enzootic circulation since they feed mainly on birds, were abundant in a number of localities and had high vector competence. Cx. perexiguus may also be important for WNV transmission to horses, as are Cx. pipiens and Cx. theileri in transmission to humans. Estimates of the WNV transmission risk based on mosquito diet, abundance and vector competence matched the results of previous WNV monitoring programs in the area. Our sensitivity analyses suggested that mosquito diet, followed by mosquito abundance and vector competence, are all relevant factors in understanding virus amplification and transmission risk in the studied wild ecosystems. At some of the studied localities, the risk of enzootic circulation of WNV was relatively high, even if the risk of transmission to humans and horses was less. Conclusions/Significance Our results describe for first time the role of five WNV candidate vectors in SW Spain. Interspecific and local differences in mosquito diet composition has an important effect on the potential transmission risk of WNV to birds, horses and humans.
Molecular Ecology | 2010
Miguel Alcaide; Jesús A. Lemus; Guillermo Blanco; José Luis Tella; David Serrano; Juan J. Negro; Airam Rodríguez; Marino García-Montijano
Pathogen diversity is thought to drive major histocompatibility complex (MHC) polymorphism given that host’s immune repertories are dependent on antigen recognition capabilities. Here, we surveyed an extensive community of pathogens (nu2003=u200335 taxa) and MHC diversity in mainland versus island subspecies of the Eurasian kestrel Falco tinnunculus and in a sympatric mainland population of the phylogenetically related lesser kestrel Falco naumanni. Insular subspecies are commonly exposed to impoverished pathogen communities whilst different species’ ecologies and contrasting life‐history traits may lead to different levels of pathogen exposure. Although specific host traits may explain differential particular infections, overall pathogen diversity, richness and prevalence were higher in the truly cosmopolitan, euriphagous and long‐distance disperser Eurasian kestrel than in the estenophagous, steppe‐specialist, philopatric but long‐distance migratory lesser kestrel. Accordingly, the continental population of Eurasian kestrels displayed a higher number (64 vs. 49) as well as more divergent alleles at both MHC class I and class II loci. Detailed analyses of amino acid diversity revealed that significant differences between both species were exclusive to those functionally important codons comprising the antigen binding sites. The lowest pathogen burdens and the smallest but still quite divergent set of MHC alleles (nu2003=u200316) were found in island Eurasian kestrels, where the rates of allele fixation at MHC loci seem to have occurred faster than at neutral markers. The results presented in this study would therefore support the role of pathogen diversity and abundance in shaping patterns of genetic variation at evolutionary relevant MHC genes.
Molecular Ecology | 2010
Miguel Alcaide; Jesús A. Lemus; Guillermo Blanco; José Luis Tella; David Serrano; Juan J. Negro; Airam Rodríguez; Marino García-Montijano
Pathogen diversity is thought to drive major histocompatibility complex (MHC) polymorphism given that host’s immune repertories are dependent on antigen recognition capabilities. Here, we surveyed an extensive community of pathogens (nu2003=u200335 taxa) and MHC diversity in mainland versus island subspecies of the Eurasian kestrel Falco tinnunculus and in a sympatric mainland population of the phylogenetically related lesser kestrel Falco naumanni. Insular subspecies are commonly exposed to impoverished pathogen communities whilst different species’ ecologies and contrasting life‐history traits may lead to different levels of pathogen exposure. Although specific host traits may explain differential particular infections, overall pathogen diversity, richness and prevalence were higher in the truly cosmopolitan, euriphagous and long‐distance disperser Eurasian kestrel than in the estenophagous, steppe‐specialist, philopatric but long‐distance migratory lesser kestrel. Accordingly, the continental population of Eurasian kestrels displayed a higher number (64 vs. 49) as well as more divergent alleles at both MHC class I and class II loci. Detailed analyses of amino acid diversity revealed that significant differences between both species were exclusive to those functionally important codons comprising the antigen binding sites. The lowest pathogen burdens and the smallest but still quite divergent set of MHC alleles (nu2003=u200316) were found in island Eurasian kestrels, where the rates of allele fixation at MHC loci seem to have occurred faster than at neutral markers. The results presented in this study would therefore support the role of pathogen diversity and abundance in shaping patterns of genetic variation at evolutionary relevant MHC genes.
Molecular Ecology | 2011
Rosa Agudo; Miguel Alcaide; Ciro Rico; Jesus A. Lemus; Guillermo Blanco; Fernando Hiraldo; José A. Donázar
Insular populations have attracted the attention of evolutionary biologists because of their morphological and ecological peculiarities with respect to their mainland counterparts. Founder effects and genetic drift are known to distribute neutral genetic variability in these demes. However, elucidating whether these evolutionary forces have also shaped adaptive variation is crucial to evaluate the real impact of reduced genetic variation in small populations. Genes of the major histocompatibility complex (MHC) are classical examples of evolutionarily relevant loci because of their well‐known role in pathogen confrontation and clearance. In this study, we aim to disentangle the partial roles of genetic drift and natural selection in the spatial distribution of MHC variation in insular populations. To this end, we integrate the study of neutral (22 microsatellites and one mtDNA locus) and MHC class II variation in one mainland (Iberia) and two insular populations (Fuerteventura and Menorca) of the endangered Egyptian vulture (Neophron percnopterus). Overall, the distribution of the frequencies of individual MHC alleles (nu2003=u200317 alleles from two class II B loci) does not significantly depart from neutral expectations, which indicates a prominent role for genetic drift over selection. However, our results point towards an interesting co‐evolution of gene duplicates that maintains different pairs of divergent alleles in strong linkage disequilibrium on islands. We hypothesize that the co‐evolution of genes may counteract the loss of genetic diversity in insular demes, maximize antigen recognition capabilities when gene diversity is reduced, and promote the co‐segregation of the most efficient allele combinations to cope with local pathogen communities.
Molecular Ecology | 2010
Miguel Alcaide
Genes of the major histocompatibility complex (MHC) have provided some of the clearest examples of how natural selection generates discordances between adaptive and neutral variation in natural populations. The type and intensity of selection as well as the strength of genetic drift are believed to be important in shaping the resulting pattern of MHC diversity. However, evaluating the relative contribution of multiple microevolutionary forces is challenging, and empirical studies have reported contrasting results. For instance, balancing selection has been invoked to explain high levels of MHC diversity and low population differentiation in comparison with other nuclear markers. Other studies have shown that genetic drift can sometimes overcome selection and then patterns of genetic variation at adaptive loci cannot be discerned from those occurring at neutral markers. Both empirical and simulated data also indicate that loss of genetic diversity at adaptive loci can occur faster than at neutral loci when selection and population bottlenecks act simultaneously. Diversifying selection, on the other hand, explains accelerated MHC divergence as the result of spatial variation in pathogen‐mediated selective regimes. Because of all these possible scenarios and outcomes, collecting information from as many study systems as possible, is crucial to enhance our understanding about the evolutionary forces driving MHC polymorphism. In this issue, Miller and co‐workers present an illuminating contribution by combining neutral markers (microsatellites) and adaptive MHC class I loci during the investigation of genetic differentiation across island populations of tuatara Sphenodon punctatus. Their study of geographical variation reveals a major role of genetic drift in shaping MHC variation, yet they also discuss some support for diversifying selection.
PeerJ | 2013
Miguel Alcaide; Mark Liu; Scott V. Edwards
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds.
BMC Research Notes | 2010
David Canal; Miguel Alcaide; Jarl Andreas Anmarkrud; Jaime Potti
BackgroundMajor Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts.FindingsIntronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species.ConclusionsIntron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.
Electrophoresis | 2010
Miguel Alcaide; Lidia López; Alessandro Tanferna; Julio Blas; Fabrizio Sergio; Fernando Hiraldo
Major histocompatibility complex (MHC) genotyping still remains one of the most challenging issues for evolutionary ecologists. To date, none of the proposed methods have proven to be perfect, and all provide both important pros and cons. Although denaturing capillary electrophoresis has become a popular alternative, allele identification commonly relies upon conformational polymorphisms of two single‐stranded DNA molecules at the most. Using the MHC class II (β chain, exon 2) of the black kite (Aves: Accipitridae) as our model system, we show that the simultaneous analysis of overlapping PCR amplicons from the same target region substantially enhances allele discrimination. To cover this aim, we designed a multiplex PCR capable to generate four differentially sized and labeled amplicons from the same allele. Informative peaks to assist allele calling then fourfold those generated by the analysis of single PCR amplicons. Our approach proved successful to differentiate all the alleles (N=13) isolated from eight unrelated birds at a single optimal run temperature and electrophoretic conditions. In particular, we emphasize that this approach may constitute a straightforward and cost‐effective alternative for the genotyping of single or duplicated MHC genes displaying low to moderate sets of divergent alleles.
BMC Research Notes | 2011
Miguel Alcaide; Airam Rodríguez; Juan J. Negro
BackgroundGenes of the Major Histocompatibility Complex (MHC) are very popular genetic markers among evolutionary biologists because of their potential role in pathogen confrontation and sexual selection. However, MHC genotyping still remains challenging and time-consuming in spite of substantial methodological advances. Although computational haplotype inference has brought into focus interesting alternatives, high heterozygosity, extensive genetic variation and population admixture are known to cause inaccuracies. We have investigated the role of sample size, genetic polymorphism and genetic structuring on the performance of the popular Bayesian PHASE algorithm. To cover this aim, we took advantage of a large database of known genotypes (using traditional laboratory-based techniques) at single MHC class I (N = 56 individuals and 50 alleles) and MHC class II B (N = 103 individuals and 62 alleles) loci in the lesser kestrel Falco naumanni.FindingsAnalyses carried out over real MHC genotypes showed that the accuracy of gametic phase reconstruction improved with sample size as a result of the reduction in the allele to individual ratio. We then simulated different data sets introducing variations in this parameter to define an optimal ratio.ConclusionsOur results demonstrate a critical influence of the allele to individual ratio on PHASE performance. We found that a minimum allele to individual ratio (1:2) yielded 100% accuracy for both MHC loci. Sampling effort is therefore a crucial step to obtain reliable MHC haplotype reconstructions and must be accomplished accordingly to the degree of MHC polymorphism. We expect our findings provide a foothold into the design of straightforward and cost-effective genotyping strategies of those MHC loci from which locus-specific primers are available.