Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Alejandro Lopez-Ramirez is active.

Publication


Featured researches published by Miguel Alejandro Lopez-Ramirez.


The FASEB Journal | 2014

MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation

Miguel Alejandro Lopez-Ramirez; Gareth Pryce; Julie E. Simpson; Arie Reijerkerk; Josh King-Robson; Oliver Kay; Helga E. de Vries; Mark C. Hirst; Basil Sharrack; David Baker; David Male; Gregory J. Michael; Ignacio A. Romero

Blood–brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR‐155 as a critical miRNA in neuroinflammation at the BBB. miR‐155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR‐155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR‐155 was strongly and rapidly upregulated by inflammatory cytokines. miR‐155 up‐regulation mimicked cytokine‐induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR‐155 partially prevented a cytokine‐induced increase in permeability. Furthermore, miR‐155 modulated brain endothelial barrier function by targeting not only cell–cell complex molecules such as annexin‐2 and claudin‐1, but also focal adhesion components such as DOCK‐1 and syntenin‐1. We propose that brain endothelial miR‐155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders.—Lopez‐Ramirez, M. A., Wu, D., Pryce, G., Simpson, J. E., Reijerkerk, A., King‐Robson, J., Kay, O, de Vries, H. E., Hirst, M. C., Sharrack, B., Baker D., Male, D. K., Michael, G. J., Romero, I. A. MicroRNA‐155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J. 28, 2551–2565 (2014). www.fasebj.org


International Journal of Developmental Neuroscience | 2008

Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling.

Miguel Alejandro Lopez-Ramirez; Gabriela Domínguez-Monzón; Paula Vergara; José Segovia

The present results show that the expression of Growth Arrest Specific1 (Gas1) in SH‐SY5Y neuroblastoma cells significantly inhibits the increased phosphorylation of tyrosine 1062 of the Ret receptor tyrosine kinase induced by glial‐cell‐line‐derived neurotrophic factor (GDNF). We also observed that Gas1 significantly reduces the activation of Akt. GDNF and members of its family of ligands (GFLs), signal through a molecular complex consisting of one of its receptors (GFRαs) and the Ret receptor tyrosine kinase. GDNF is a key component to preserve several cell populations in the nervous system, including dopaminergic and motor neurons, and also participates in the survival and differentiation of peripheral neurons such as enteric, sympathetic and parasympathetic. On the other hand, Gas1 is a molecule involved in cell arrest that can induce apoptosis when over‐expressed in different cell lines, including cells of neuronal and glial origin. Although, Gas1 is widely expressed during development, its role in vivo has not yet been clearly defined. We recently showed the structural homology between Gas1 and GFRαs, thus suggesting that the physiological role of Gas1 is that of modulating the biological responses induced by GDNF and/or other members of this family of signaling molecules. The results of this work are consistent with the hypothesis of Gas1 acting as a negative modulator of GDNF signaling.


Epigenetics | 2014

Role of miRNAs and epigenetics in neural stem cell fate determination.

Miguel Alejandro Lopez-Ramirez; Stefania Nicoli

The regulation of gene expression that determines stem cell fate determination is tightly controlled by both epigenetic and posttranscriptional mechanisms. Indeed, small non-coding RNAs such as microRNAs (miRNAs) are able to regulate neural stem cell fate by targeting chromatin-remodeling pathways. Here, we aim to summarize the latest findings regarding the feedback network of epigenetics and miRNAs during embryonic and adult neurogenesis.


Developmental Cell | 2015

A Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis.

Emma Ristori; Miguel Alejandro Lopez-Ramirez; Anand Narayanan; Guillermina Hill-Teran; Albertomaria Moro; Charles-Félix Calvo; Jean-Léon Thomas; Stefania Nicoli

Dicer controls the biogenesis of microRNAs (miRNAs) and is essential for neurogenesis. Recent reports show that the levels and substrate selectivity of DICER result in the preferential biogenesis of specific miRNAs in vitro. However, how dicer expression levels and miRNA biogenesis are regulated in vivo and how this affects neurogenesis is incompletely understood. Here we show that during zebrafish hindbrain development dicer expression levels are controlled by miR-107 to tune the biogenesis of specific miRNAs, such as miR-9, whose levels regulate neurogenesis. Loss of miR-107 function stabilizes dicer levels and miR-9 biogenesis across the ventricular hindbrain zone, resulting in an increase of both proliferating progenitors and postmitotic neurons. miR-9 ectopic accumulation in differentiating neuronal cells recapitulated the excessive neurogenesis phenotype. We propose that miR-107 modulation of dicer levels in differentiating neuronal cells is required to maintain the homeostatic levels of specific miRNAs, whose precise accumulation is essential for neurogenesis.


Fluids and Barriers of the CNS | 2013

Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3

Miguel Alejandro Lopez-Ramirez; David Male; Chunfang Wang; Basil Sharrack; Ignacio A. Romero

BackgroundThe human cerebral microvascular endothelial cell line, hCMEC/D3, has been used extensively to model the blood–brain barrier (BBB) in vitro. Recently, we reported that cytokine-treatment induced loss of brain endothelial barrier properties. In this study, we further determined the gene expression pattern of hCMEC/D3 cells in response to activation with TNFα and IFNγ.FindingsUsing a microarray approach, we observed that expression of genes involved in the control of barrier permeability, including inter-brain endothelial junctions (e.g. claudin-5, MARVELD-2), integrin-focal adhesions complexes (e.g. integrin β1, ELMO-1) and transporter systems (e.g. ABCB1, SLC2A1), are altered by pro-inflammatory cytokines.ConclusionsOur study shows that previously-described cytokine-induced changes in the pattern of gene expression of endothelium are reproduced in hCMEC/D3 cells, suggesting that this model is suitable to study inflammation at the BBB, while at the same time it has provided insights into novel key molecular processes that are altered in brain endothelium during neuroinflammation, such as modulation of cell-to-matrix contacts.


Journal of Cerebral Blood Flow and Metabolism | 2015

Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation

Camilla Cerutti; Miguel Alejandro Lopez-Ramirez; Gareth Pryce; Josh King-Robson; Julie E. Simpson; Susanne M. A. van der Pol; Mark C. Hirst; Helga E. de Vries; Basil Sharrack; David Baker; David Male; Gregory J. Michael; Ignacio A. Romero

Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation.


The FASEB Journal | 2016

Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation

Miguel Alejandro Lopez-Ramirez; Arie Reijerkerk; Helga E. de Vries; Ignacio A. Romero

Brain endothelial cells constitute the major cellular element of the highly specialized blood‐brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood‐borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV‐associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.—Lopez‐Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J. 30, 2662‐2672 (2016). www.fasebj.org


Fluids and Barriers of the CNS | 2016

MicroRNA-155 contributes to shear-resistant leukocyte adhesion to human brain endothelium in vitro

Camilla Cerutti; Patricia Soblechero-Martin; Miguel Alejandro Lopez-Ramirez; Helga E. de Vries; Basil Sharrack; David Male; Ignacio A. Romero

BackgroundIncreased leukocyte adhesion to brain endothelial cells forming the blood–brain barrier (BBB) precedes extravasation into the central nervous system (CNS) in neuroinflammatory diseases such as multiple sclerosis (MS). Previously, we reported that microRNA-155 (miR-155) is up-regulated in MS and by inflammatory cytokines in human brain endothelium, with consequent modulation of endothelial paracellular permeability. Here, we investigated the role of endothelial miR-155 in leukocyte adhesion to the human cerebral microvascular endothelial cell line, hCMEC/D3, under shear forces mimicking blood flow in vivo.ResultsUsing a gain- and loss-of-function approach, we show that miR-155 up-regulation increases leukocyte firm adhesion of both monocyte and T cells to hCMEC/D3 cells. Inhibition of endogenous endothelial miR-155 reduced monocytic and T cell firm adhesion to naïve and cytokines-induced human brain endothelium. Furthermore, this effect is partially associated with modulation of the endothelial cell adhesion molecules VCAM1 and ICAM1 by miR-155.ConclusionsOur results suggest that endothelial miR-155 contribute to the regulation of leukocyte adhesion at the inflamed BBB. Taken together with previous observations, brain endothelial miR-155 may constitute a potential molecular target for treatment of neuroinflammation diseases.


Journal of Experimental Medicine | 2017

Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations

Miguel Alejandro Lopez-Ramirez; Gregory J. Fonseca; Hussein A. Zeineddine; Romuald Girard; Thomas R. Moore; Angela Pham; Ying Cao; Robert Shenkar; Bart-Jan de Kreuk; Frederic Lagarrigue; Jack Lawler; Christopher K. Glass; Issam A. Awad; Mark H. Ginsberg

KRIT1 mutations are the most common cause of cerebral cavernous malformation (CCM). Acute Krit1 gene inactivation in mouse brain microvascular endothelial cells (BMECs) changes expression of multiple genes involved in vascular development. These changes include suppression of Thbs1, which encodes thrombospondin1 (TSP1) and has been ascribed to KLF2- and KLF4-mediated repression of Thbs1. In vitro reconstitution of TSP1 with either full-length TSP1 or 3TSR, an anti-angiogenic TSP1 fragment, suppresses heightened vascular endothelial growth factor signaling and preserves BMEC tight junctions. Furthermore, administration of 3TSR prevents the development of lesions in a mouse model of CCM1 (Krit1ECKO) as judged by histology and quantitative micro-computed tomography. Conversely, reduced TSP1 expression contributes to the pathogenesis of CCM, because inactivation of one or two copies of Thbs1 exacerbated CCM formation. Thus, loss of Krit1 function disables an angiogenic checkpoint to enable CCM formation. These results suggest that 3TSR, or other angiogenesis inhibitors, can be repurposed for TSP1 replacement therapy for CCMs.


Journal of Visualized Experiments | 2016

Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres.

Miguel Alejandro Lopez-Ramirez; Charles-Félix Calvo; Emma Ristori; Jean-Léon Thomas; Stefania Nicoli

The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.

Collaboration


Dive into the Miguel Alejandro Lopez-Ramirez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helga E. de Vries

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge