Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Angel Campanero is active.

Publication


Featured researches published by Miguel Angel Campanero.


Journal of Controlled Release | 2010

Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles

Maite Agüeros; Virginia Zabaleta; Socorro Espuelas; Miguel Angel Campanero; J.M. Irache

The aim of this work was to study the oral bioavailability in rats of paclitaxel (PTX) when encapsulated as a complex with cyclodextrins in poly(anhydride) nanoparticles (NP). For this purpose three different cyclodextrins were selected: beta-cyclodextrin (CD), 2-hydroxypropyl-beta-cyclodextrin (HPCD) and 6-monodeoxy-6-monoamino-beta-cyclodextrin (NHCD). A single dose of 10mg paclitaxel per kg body weight as PTX-cyclodextrin nanoparticles was used. Plasma curves were characterised by a plateau of paclitaxel concentration close to the C(max) from T(max) till 24h post-administration. For PTX-CD NP and PTX-HPCD NP, these sustained levels of the anticancer drug were found to be between 27 and 33-fold higher than the reported value of drug activity whereas the relative oral bioavailability of paclitaxel was calculated to be higher than 80%. These facts would be directly related with a synergistic effect obtained by the combination of the bioadhesive properties of poly(anhydride) nanoparticles and the inhibitory effect of cyclodextrins on the activity of P-glycoprotein and cythocrome P450.


Journal of Controlled Release | 2003

Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties

P. Arbós; Miguel Angel Campanero; M.A Arangoa; M.J Renedo; Juan M. Irache

The aim of this work was to investigate the influence of the cross-linkage of poly(methylvinylether-co-maleic anhydride) (PVM/MA) nanoparticles with increasing amounts of 1,3-diaminopropane (DP) and, eventually, bovine serum albumin (BSA) on their gastrointestinal transit and bioadhesive properties. The fluorescently-labelled formulations were orally administered to rats and, at different times, the amount of nanoparticles in both the lumen content and adhered to the gut mucosa were quantified. The gut transit was evaluated by calculating the gastric (k(ge)) and intestinal (k(ie)) emptying rates. The adhered fraction of nanoparticles in the whole gut was plotted versus time and, from these curves, the intensity, capacity and extent of the adhesive interactions were estimated. The bioadhesive potential of PVM/MA was much higher when formulated as nanoparticles (NP) than in the solubilised form in water. However, k(ge) and k(ie) increased by increasing the extent of cross-linkage of nanoparticles with DP, while the capacity to develop adhesive interactions and the intensity of the adhesive phenomenon were significantly higher for non-hardened than for DP-cross-linked carriers. In contrast, the BSA-coating of cross-linked nanoparticles significantly decreased k(ge) and k(gi), whereas the intensity of the bioadhesive phenomenon was significantly higher than for NP. In summary, the adhesivity of the nanoparticles appears to modulate their gastrointestinal transit profile.


Pharmaceutical Research | 2001

Gliadin Nanoparticles as Carriers for the Oral Administration of Lipophilic Drugs. Relationships Between Bioadhesion and Pharmacokinetics

M.A Arangoa; Miguel Angel Campanero; M.J Renedo; Gilles Ponchel; Juan M. Irache

AbstractPurpose. The aim of this work was to evaluate the bioadhesive properties of non-hardened gliadin nanoparticles (NPs) and cross-linked gliadin nanoparticles (CL-NP) in the carbazole pharmacokinetic parameters obtained after the oral administration of these carriers. Methods. A deconvolution model was used to estimate the carbazole absorption when loaded in the different gliadin nanoparticles. In addition, the elimination rates of both adhered and non-adhered nanoparticulate fractions within the stomach were estimated. Results. Nanoparticles dramatically increased the carbazole oral bioavailability up to 49% and provided sustained release properties related to a decrease of the carbazole plasma elimination rate. The carbazole release rates from nanoparticles (NP and CL-NP), calculated by deconvolution, were found to be of the same order as the elimination rates of the adhered fractions of nanoparticles in the stomach mucosa. In addition, good correlation was found between the carbazole plasmatic levels, during the period of time in which the absorption process prevails, and the amount of adhered carriers to the stomach mucosa. Conclusion. Gliadin nanoparticles significantly increased the carbazole bioavailability, providing sustained plasma concentrations of this lipophilic molecule. These pharmacokinetic modifications were directly related to the bioadhesive capacity of these carriers with the stomach mucosa.


International Journal of Pharmaceutics | 2002

Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles

P. Arbós; M.A Arangoa; Miguel Angel Campanero; Juan M. Irache

This work describes the bioadhesive properties of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) nanoparticles fluorescently-labelled with rhodamine B isothiocyanate, and coated with either Sambucus nigra lectin (SNA-NP) or bovine serum albumin (BSA-NP). The different formulations (10 mg) were administered to animals by the oral route and the fraction of adhered particles to the mucosa was estimated by measuring the fluorescent marker after the digestion of the tissue. Plotting the amount of adhered particles in the whole gut versus time enabled us to determine the affinity of the formulation for the biological support (expressed as Q(max)), the intensity and relative duration of the bioadhesive phenomenon (AUC(adh) and MRT(adh), respectively), and the elimination rate of the adhered particles (k(adh)). SNA-NP displayed a similar adhesive affinity and adhesive intensity for the gut mucosa than the control particles; although, its maximum of interaction with the mucosa was observed 1 h post-administration, whereas control and BSA-NP took place only 30 min post-administration. On the other hand, the coating of nanoparticles with SNA significantly reduced the k(adh) (P<0.01) and, thus, MRT(adh) was 35 min longer for the lectin-conjugate than for the control. BSA-NP displayed a highest initial affinity for the gut mucosa and AUC(adh) was calculated to be 1.5 fold higher than for the control or SNA-NP. However, BSA-NP were eliminated more rapidly from the mucosa than SNA-NP and, thus, the MRT(adh) was only 27 min longer than control. In summary, the parameters describing the bioadhesive profile of a given formulation may be useful to quantify the potential of colloidal particulates to interact with a mucosa and to evaluate the influence of different ligands on the bioadhesive properties of the resulting drug carriers.


Oncogene | 2010

Lipid raft-targeted therapy in multiple myeloma.

Faustino Mollinedo; J de la Iglesia-Vicente; Consuelo Gajate; A. Estella-Hermoso de Mendoza; Janny A. Villa-Pulgarin; Miguel Angel Campanero; María J. Blanco-Prieto

Despite recent advances in treatment, multiple myeloma (MM) remains an incurable malignancy. By using in vitro, ex vivo and in vivo approaches, we have identified here that lipid rafts constitute a new target in MM. We have found that the phospholipid ether edelfosine targets and accumulates in MM cell membrane rafts, inducing apoptosis through co-clustering of rafts and death receptors. Raft disruption by cholesterol depletion inhibited drug uptake by tumor cells as well as cell killing. Cholesterol replenishment restored MM cell ability to take up edelfosine and to undergo drug-induced apoptosis. Ceramide addition displaced cholesterol from rafts, and inhibited edelfosine-induced apoptosis. In an MM animal model, edelfosine oral administration showed a potent in vivo antimyeloma activity, and the drug accumulated preferentially and dramatically in the tumor. A decrease in tumor cell cholesterol, a major raft component, inhibited the in vivo antimyeloma action of edelfosine and reduced drug uptake by the tumor. The results reported here provide the proof-of-principle and rationale for further clinical evaluation of edelfosine and for this raft-targeted therapy to improve patient outcome in MM. Our data reveal cholesterol-containing lipid rafts as a novel and efficient therapeutic target in MM, opening a new avenue in cancer treatment.


Clinical Cancer Research | 2010

In vitro and In vivo Selective Antitumor Activity of Edelfosine against Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Involving Lipid Rafts

Faustino Mollinedo; Janis de la Iglesia-Vicente; Consuelo Gajate; Ander Estella-Hermoso de Mendoza; Janny A. Villa-Pulgarin; Mercè de Frias; Gaël Roué; Joan Gil; Dolors Colomer; Miguel Angel Campanero; María J. Blanco-Prieto

Purpose: Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) remain B-cell malignancies with limited therapeutic options. The present study investigates the in vitro and in vivo effect of the phospholipid ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) in MCL and CLL. Experimental Design: Several cell lines, patient-derived tumor cells, and xenografts in severe combined immunodeficient mice were used to examine the anti-MCL and anti-CLL activity of edelfosine. Furthermore, we analyzed the mechanism of action and drug biodistribution of edelfosine in MCL and CLL tumor-bearing severe combined immunodeficient mice. Results: Here, we have found that the phospholipid ether edelfosine was the most potent alkyl-lysophospholipid analogue in killing MCL and CLL cells, including patient-derived primary cells, while sparing normal resting lymphocytes. Alkyl-lysophospholipid analogues ranked edelfosine > perifosine ≫ erucylphosphocholine ≥ miltefosine in their capacity to elicit apoptosis in MCL and CLL cells. Edelfosine induced coclustering of Fas/CD95 death receptor and rafts in MCL and CLL cells. Edelfosine was taken up by malignant cells, whereas normal resting lymphocytes hardly incorporated the drug. Raft disruption by cholesterol depletion inhibited drug uptake, Fas/CD95 clustering, and edelfosine-induced apoptosis. Edelfosine oral administration showed a potent in vivo anticancer activity in MCL and CLL xenograft mouse models, and the drug accumulated dramatically and preferentially in the tumor. Conclusions: Our data indicate that edelfosine accumulates and kills MCL and CLL cells in a rather selective way, and set coclustering of Fas/CD95 and lipid rafts as a new framework in MCL and CLL therapy. Our data support a selective antitumor action of edelfosine. Clin Cancer Res; 16(7); 2046–54. ©2010 AACR.


European Journal of Pharmaceutical Sciences | 2009

Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles.

Maite Agüeros; Paloma Areses; Miguel Angel Campanero; Hesham H. Salman; Gemma Quincoces; Iván Peñuelas; Juan M. Irache

This work describes the preparation, characterization and evaluation of the nanoparticles formed by the copolymer of methyl vinyl ether and maleic anhydride (Gantrez) AN) and cyclodextrins, including beta-cyclodextrin (CD) hydroxypropyl-beta-cyclodextrin (HPCD) and 6-monodeoxy-6-monoamino-beta-cyclodextrin (NHCD). The cyclodextrin-poly(anhydride) nanoparticles were prepared by a solvent displacement method and characterized by measuring the size, zeta potential, morphology and composition. For bioadhesion studies, nanoparticles were fluorescently labelled with rhodamine B isothiocianate (RBITC). For in vivo imaging biodistribution studies, (99m)Tc-labelled nanoparticles were used. Nanoparticles displayed a size of about 150nm and a cyclodextrin content which was found optimal under the following experimental conditions: cyclodextrin/poly(anhydride) ratio of 0.25 by weight, 30min of incubation time between the cyclodextrin and the polymer. Moreover, the oligosaccharide content was higher with CD than with NHCD and HPCD. Overall, cyclodextrin-poly(anhydride) nanoparticles displayed homogeneous bioadhesive interactions within the gut. The intensity of these interactions was higher than for control nanoparticles. The high bioadhesive capacity was observed for HPCD-NP and NHCD-NP which can be related with their rough morphology and, thus, a higher specific surface than for smooth nanoparticles (CD-NP). Finally, from in vivo studies, no evidence of translocation of distribution to other organs was observed when these nanoparticles were orally administered.


Expert Opinion on Drug Delivery | 2005

Bioadhesive properties of pegylated nanoparticles

Krassimira Yoncheva; Sara Gómez; Miguel Angel Campanero; Carlos Gamazo; Juan M. Irache

The design of bioadhesive nanoparticles (NPs) for targeting specific sites within the gut remains a major challenge. One possible strategy to solve this problem may be the use of pegylated NPs. In general, these carriers display different bioadhesive properties to nondecorated NPs. Thus, pegylated NPs show a higher ability to interact with the small intestine mucosa rather than with the stomach. However, the type of surface conformation of polyethylene glycol chains appears to have a great influence on the behaviour of these NPs. Theoretically, the traditional ‘brush’ polyethylene glycol corona would facilitate the penetration of the pegylated particles through the mucus layer and the subsequent adhesive interaction with the mucosa, which would promote their absorption by intestinal enterocytes. On the contrary, pegylated NPs with a ‘loop’ conformation would increase the time of residence of the adhered fraction of particles in the mucosa.


Molecules | 2005

Bioadhesive Properties of Gantrez Nanoparticles

Juan M. Irache; María Huici; Monica Konecny; Socorro Espuelas; Miguel Angel Campanero; P. Arbós

Bioadhesive nanoparticles have been proposed as carriers for the oral delivery of poorly available drugs and facilitate the use of this route. This work summarises some experiments describing the bioadhesive potential of Gantrez nanoparticles fluorescently labeled with rhodamine B isothiocyanate. The adhesive potential of Gantrez was found to be stronger when folded as nanoparticles than in the solubilised form. Conventional nanoparticles displayed a tropism for the upper areas of the gastrointestinal tract, with a maximum of adhesion 30 min post-administration and a decrease in the adhered fraction along the time depending on the given dose. The cross-linkage of nanoparticles with increasing amounts of 1,3-diaminopropane stabilised the resulting carriers and prolonged their half-life in an aqueous environment; although, the adhesive capacity of nanoparticles, the intensity and the relative duration of the adhesive interactions within the gut as a function of the cross-linking degree. Finally, nanoparticles were coated with either gelatin or albumin. In the first case, the presence of gelatin dramatically decreased the initial capacity of these carriers to interact with the gut mucosa and the intensity of these phenomenons. In the latter, bovine serum albumin coated nanoparticles (BSA-NP) showed an important tropism for the stomach mucosa without further significant distribution to other parts of the gut mucosa.


Antimicrobial Agents and Chemotherapy | 2007

Poly(d,l-Lactide-Coglycolide) Particles Containing Gentamicin: Pharmacokinetics and Pharmacodynamics in Brucella melitensis- Infected Mice

M. C. Lecaroz; María J. Blanco-Prieto; Miguel Angel Campanero; H. Salman; Carlos Gamazo

ABSTRACT Drug delivery systems containing gentamicin were studied as a treatment against experimental brucellosis in mice. Micro- and nanoparticles prepared by using poly(d,l-lactide-coglycolide) (PLGA) 502H and microparticles made of PLGA 75:25H were successfully delivered to the liver and the spleen, the target organs for Brucella melitensis. Both polymers have the same molecular weight but have different lactic acid/glycolic acid ratios. Microparticles of PLGA 502H and 75:25H released their contents in a sustained manner, in contrast to PLGA 502H nanoparticles, which were degraded almost completely during the first week postadministration. The values of the pharmacokinetic parameters after administration of a single intravenous dose of 1.5 mg/kg of body weight of loaded gentamicin revealed higher areas under the curve (AUCs) for the liver and the spleen and increased mean retention times (MRTs) compared to those for the free drug, indicating the successful uptake by phagocytic cells in both organs and the controlled release of the antibiotic. Both gentamicin-loaded PLGA 502H and 75:25H microparticles presented similar pharmacokinetic parameter values for the liver, but those made of PLGA 75:25 H were more effective in targeting the antibiotic to the spleen (higher AUCs and MRTs). The administration of three doses of 1.5 mg/kg significantly reduced the load associated with the splenic B. melitensis infection. Thus, the formulation made with the 75:25H polymer was more effective than that made with 502H microspheres (1.45-log and 0.45-log reductions, respectively, at 3 weeks posttreatment). Therefore, both, pharmacokinetic and pharmacodynamic parameters showed the suitability of 75:25H microspheres to reduce the infection of experimentally infected mice with B. melitensis.

Collaboration


Dive into the Miguel Angel Campanero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faustino Mollinedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Arbós

University of Navarra

View shared research outputs
Researchain Logo
Decentralizing Knowledge