Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Angel Pujana is active.

Publication


Featured researches published by Miguel Angel Pujana.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distinct DNA methylomes of newborns and centenarians

Holger Heyn; Ning Li; Humberto J. Ferreira; Sebastian Moran; David G. Pisano; Antonio Gomez; Javier Díez; Jose V. Sanchez-Mut; Fernando Setien; F. Javier Carmona; Annibale Alessandro Puca; Sergi Sayols; Miguel Angel Pujana; Jordi Serra-Musach; Isabel Iglesias-Platas; Francesc Formiga; Agustín F. Fernández; Mario F. Fraga; Simon Heath; Alfonso Valencia; Ivo Gut; Jun Wang; Manel Esteller

Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level.


Cell | 2001

A Polymorphic Genomic Duplication on Human Chromosome 15 Is a Susceptibility Factor for Panic and Phobic Disorders

Mònica Gratacòs; Marga Nadal; R. Martin-Santos; Miguel Angel Pujana; Jordi Gago; Belén Peral; Lluís Armengol; Immaculada Ponsa; Rosa Miró; Antoni Bulbena; Xavier Estivill

Anxiety disorders are complex and common psychiatric illnesses associated with considerable morbidity and social cost. We have studied the molecular basis of the cooccurrence of panic and phobic disorders with joint laxity. We have identified an interstitial duplication of human chromosome 15q24-26 (named DUP25), which is significantly associated with panic/agoraphobia/social phobia/joint laxity in families, and with panic disorder in nonfamilial cases. Mosaicism, different forms of DUP25 within the same family, and absence of segregation of 15q24-26 markers with DUP25 and the psychiatric phenotypes suggest a non-Mendelian mechanism of disease-causing mutation. We propose that DUP25, which is present in 7% control subjects, is a susceptibility factor for a clinical phenotype that includes panic and phobic disorders and joint laxity.


Human Genetics | 1999

Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases

Miguel Angel Pujana; Jordi Corral; Mònica Gratacòs; Onofre Combarros; José Berciano; David Genís; Isabel Banchs; Xavier Estivill; Victor Volpini

Abstract Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene.


European Journal of Human Genetics | 2002

Human chromosome 15q11-q14 regions of rearrangements contain clusters of LCR15 duplicons

Miguel Angel Pujana; Marga Nadal; Miriam Guitart; Lluís Armengol; Mònica Gratacòs; Xavier Estivill

Six breakpoint regions for rearrangements of human chromosome 15q11-q14 have been described. These rearrangements involve deletions found in approximately 70% of Prader-Willi or Angelmans syndrome patients (PWS, AS), duplications detected in some cases of autism, triplications and inverted duplications. HERC2-containing (HEct domain and RCc1 domain protein 2) segmental duplications or duplicons are present at two of these breakpoints (BP2 and BP3) mainly associated with deletions. We show here that clusters containing several copies of the human chromosome 15 low-copy repeat (LCR15) duplicon are located at each of the six described 15q11-q14 BPs. In addition, our results suggest the existence of breakpoints for large 15q11-q13 deletions in a proximal duplicon-containing clone. The study reveals that HERC2-containing duplicons (estimated on 50–400 kb) and LCR15 duplicons (∼15 kb on 15q11-q14) share the golgin-like protein (GLP) genomic sequence. Through the analysis of a human BAC library and public databases we have identified 36 LCR15 related sequences in the human genome, most (27) mapping to chromosome 15q and being transcribed. LCR15 analysis in non-human primates and age-sequence divergences support a recent origin of this family of segmental duplications through human speciation.


Genome Medicine | 2014

Modules, networks and systems medicine for understanding disease and aiding diagnosis

Mika Gustafsson; Colm E. Nestor; Huan Zhang; Albert-László Barabási; Sergio E. Baranzini; Søren Brunak; Kian Fan Chung; Howard J. Federoff; Anne-Claude Gavin; Richard R. Meehan; Paola Picotti; Miguel Angel Pujana; Nikolaus Rajewsky; Kenneth G. C. Smith; Peter J. Sterk; Pablo Villoslada; Mikael Benson

Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics data have identified modules of disease-associated genes that have been used to obtain both a systems level and a molecular understanding of disease mechanisms. For example, in allergy a module was used to find a novel candidate gene that was validated by functional and clinical studies. Such analyses play important roles in systems medicine. This is an emerging discipline that aims to gain a translational understanding of the complex mechanisms underlying common diseases. In this review, we will explain and provide examples of how network-based analyses of omics data, in combination with functional and clinical studies, are aiding our understanding of disease, as well as helping to prioritize diagnostic markers or therapeutic candidate genes. Such analyses involve significant problems and limitations, which will be discussed. We also highlight the steps needed for clinical implementation.


Nucleic Acids Research | 2009

Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

Ignacio Medina; David Montaner; Núria Bonifaci; Miguel Angel Pujana; José Carbonell; Joaquín Tárraga; Fatima Al-Shahrour; Joaquín Dopazo

Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap/


Gastroenterology | 2015

Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair

Nuria Seguí; Leonardo B. Mina; Conxi Lázaro; Rebeca Sanz-Pamplona; Tirso Pons; Matilde Navarro; Fernando Bellido; Adriana Lopez-Doriga; Rafael Valdés-Mas; Marta Pineda; Elisabet Guinó; August Vidal; José-Luis Soto; Trinidad Caldés; Mercedes Durán; Miguel Urioste; Daniel Rueda; Joan Brunet; Milagros Balbín; Pilar Blay; Silvia Iglesias; Pilar Garre; Enrique Lastra; Ana Beatriz Sánchez-Heras; Alfonso Valencia; Victor Moreno; Miguel Angel Pujana; Alberto Villanueva; Ignacio Blanco; Gabriel Capellá

Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.


Cell Reports | 2014

Linkage of DNA methylation quantitative trait loci to human cancer risk.

Holger Heyn; Sergi Sayols; Catia Moutinho; Enrique Vidal; Jose V. Sanchez-Mut; Olafur A. Stefansson; Ernest Nadal; Sebastian Moran; Jorunn E. Eyfjörd; Eva González-Suárez; Miguel Angel Pujana; Manel Esteller

Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL) have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.


Oncogene | 2010

Biological reprogramming in acquired resistance to endocrine therapy of breast cancer

Helena Aguilar; Xavier Solé; Núria Bonifaci; Jordi Serra-Musach; Abul B.M.M.K. Islam; Nuria Lopez-Bigas; M Méndez-Pertuz; Roderick L. Beijersbergen; Conxi Lázaro; Ander Urruticoechea; Miguel Angel Pujana

Endocrine therapies targeting the proliferative effect of 17β-estradiol through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through molecular mechanisms that are not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7–LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were predicted to be influenced by transcription factors known to be involved in acquired resistance or cell proliferation (for example, interferon regulatory transcription factor 1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7–LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7–LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and tamoxifen, and recurrence after tamoxifen treatment. In accordance with these profiles, MCF7–LTED cells showed increased sensitivity to inhibition of FGFR-mediated signaling with PD173074. This study provides mechanistic insight into acquired resistance to endocrine therapies of breast cancer and highlights a potential therapeutic strategy.


Genome Research | 2016

Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks.

Endre Sebestyén; Babita Singh; Belén Miñana; Amadís Pagès; Francesca Mateo; Miguel Angel Pujana; Juan Valcárcel; Eduardo Eyras

Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.

Collaboration


Dive into the Miguel Angel Pujana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Serra-Musach

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Moreno

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Volpini

Casa Sollievo della Sofferenza

View shared research outputs
Researchain Logo
Decentralizing Knowledge