Miguel Angel Veganzones
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Angel Veganzones.
IEEE Geoscience and Remote Sensing Magazine | 2015
Laetitia Loncan; Luís B. Almeida; José M. Bioucas-Dias; Xavier Briottet; Jocelyn Chanussot; Nicolas Dobigeon; Sophie Fabre; Wenzhi Liao; Giorgio Licciardi; Miguel Simões; Jean-Yves Tourneret; Miguel Angel Veganzones; Gemine Vivone; Qi Wei; Naoto Yokoya
Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate an image with the high spatial resolution of the former and the high spectral resolution of the latter. In the last decade, many algorithms have been presented in the literatures for pansharpening using multispectral data. With the increasing availability of hyperspectral systems, these methods are now being adapted to hyperspectral images. In this work, we compare new pansharpening techniques designed for hyperspectral data with some of the state-of-the-art methods for multispectral pansharpening, which have been adapted for hyperspectral data. Eleven methods from different classes (component substitution, multiresolution analysis, hybrid, Bayesian and matrix factorization) are analyzed. These methods are applied to three datasets and their effectiveness and robustness are evaluated with widely used performance indicators. In addition, all the pansharpening techniques considered in this paper have been implemented in a MATLAB toolbox that is made available to the community.
IEEE Transactions on Image Processing | 2014
Miguel Angel Veganzones; Guillaume Tochon; Mauro Dalla-Mura; Antonio Plaza; Jocelyn Chanussot
The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear spectral unmixing consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions.
international conference on knowledge based and intelligent information and engineering systems | 2008
Miguel Angel Veganzones; Manuel Graña
The analysis of hyperspectral images on the basis of the spectral decomposition of their pixels through the so called spectral unmixing process, has applications in thematic map generation, target detection and unsupervised image segmentation. The critical step is the determination of the endmembers used as the references for the unmixing process. We give a comprehensive enumeration of the methods used in practice, because of its implementation in widely used software packages, and those published in the literature. We have structured the review according to the basic computational approach followed by the algorithms: those based on the computational geometry formulation, the ones following lattice computing ideas and heuristic approaches with a weak formal foundation.
IEEE Transactions on Image Processing | 2016
Miguel Angel Veganzones; Miguel Simões; Giorgio Licciardi; Naoto Yokoya; José M. Bioucas-Dias; Jocelyn Chanussot
Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.
Pattern Recognition | 2012
Manuel Graña; Miguel Angel Veganzones
We propose a specific content-based image retrieval (CBIR) system for hyperspectral images exploiting its rich spectral information. The CBIR image features are the endmember signatures obtained from the image data by endmember induction algorithms (EIAs). Endmembers correspond to the elementary materials in the scene, so that the pixel spectra can be decomposed into a linear combination of endmember signatures. EIA search for points in the high dimensional space of pixel spectra defining a convex polytope, often a simplex, covering the image data. This paper introduces a dissimilarity measure between hyperspectral images computed over the image induced endmembers, proving that it complies with the axioms of a distance. We provide a comparative discussion of dissimilarity functions, and quantitative evaluation of their relative performances on a large collection of synthetic hyperspectral images, and on a dataset extracted from a real hyperspectral image. Alternative dissimilarity functions considered are the Hausdorff distance and robust variations of it. We assess the CBIR performance sensitivity to changes in the distance between endmembers, the EIA employed, and some other conditions. The proposed hyperspectral image distance improves over the alternative dissimilarities in all quantitative performance measures. The visual results of the CBIR on the real image data demonstrate its usefulness for practical applications.
workshop on hyperspectral image and signal processing evolution in remote sensing | 2014
Miguel Angel Veganzones; Lucas Drumetz; Guillaume Tochon; M. Dalla Mura; Antonio Plaza; José M. Bioucas-Dias; Jocelyn Chanussot
Spectral variability is a phenomenon due, to a grand extend, to variations in the illumination and atmospheric conditions within a hyperspectral image, causing the spectral signature of a material to vary within a image. Data spectral fluctuation due to spectral variability compromises the linear mixing model (LMM) sum-to-one constraint, and is an important source of error in hyperspectral image analysis. Recently, spectral variability has raised more attention and some techniques have been proposed to address this issue, i.e. spectral bundles. Here, we propose the definition of an extended LMM (ELMM) to model spectral variability and we show that the use of spectral bundles models the ELMM implicitly. We also show that the constrained least squares (CLS) is an explicit modelling of the ELMM when the spectral variability is due to scaling effects. We give experimental validation that spectral bundles (and sparsity) and CLS are complementary techniques addressing spectral variability. We finally discuss on future research avenues to fully exploit the proposed ELMM.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2012
Miguel Angel Veganzones; Manuel Graña
This paper introduces a novel content-based image retrieval (CBIR) system for hyperspectral image databases using both spectral and spatial features computed following an unsupervised unmixing process which minimizes human intervention. The set of endmembers obtained from the image by an Endmember Induction Algorithm provides the image spectral features. Spatial features are computed as abundance image statistics. Both kinds of information are functionally combined into a dissimilarity measure between two hyperspectral images. This dissimilarity measure guides the search for answers to database queries. The system allows the user to retrieve hyperspectral images containing materials similar to the query image, and in a similar proportion. We provide validation results using both synthetic hyperspectral datasets and real hyperspectral data.
IEEE Transactions on Image Processing | 2016
Lucas Drumetz; Miguel Angel Veganzones; Simon Henrot; Ronald Phlypo; Jocelyn Chanussot; Christian Jutten
Spectral unmixing is one of the main research topics in hyperspectral imaging. It can be formulated as a source separation problem, whose goal is to recover the spectral signatures of the materials present in the observed scene (called endmembers) as well as their relative proportions (called fractional abundances), and this for every pixel in the image. A linear mixture model (LMM) is often used for its simplicity and ease of use, but it implicitly assumes that a single spectrum can be completely representative of a material. However, in many scenarios, this assumption does not hold, since many factors, such as illumination conditions and intrinsic variability of the endmembers, induce modifications on the spectral signatures of the materials. In this paper, we propose an algorithm to unmix hyperspectral data using a recently proposed extended LMM. The proposed approach allows a pixelwise spatially coherent local variation of the endmembers, leading to scaled versions of reference endmembers. We also show that the classic nonnegative least squares, as well as other approaches to tackle spectral variability can be interpreted in the framework of this model. The results of the proposed algorithm on two different synthetic datasets, including one simulating the effect of topography on the measured reflectance through physical modelling, and on two real data sets, show that the proposed technique outperforms other methods aimed at addressing spectral variability, and can provide an accurate estimation of endmember variability along the scene because of the scaling factors estimation.
Archive | 2008
Miguel Angel Veganzones; José Orlando Maldonado; Manuel Graña
This chapter includes a review of some key elements of Content Based Image Retrieval Systems (CBIR). We place into this context the the works found in the literature regarding remote sensing images. Our own focus is on hyperspectral images. The approach we are pursuing is that of characterizing the spectral content of the image through the set of endmembers induced from it. We describe some ideas and numerical experiments for a system that would perform CBIR on hyperspectral remote sensing images . We propose a spectral image similarity to guide the search to answer the queries.
IEEE Transactions on Geoscience and Remote Sensing | 2016
Miguel Angel Veganzones; Jeremy E. Cohen; Rodrigo Cabral Farias; Jocelyn Chanussot; Pierre Comon
New hyperspectral missions will collect huge amounts of hyperspectral data. In addition, it is possible now to acquire time series and multiangular hyperspectral images. The process and analysis of these big data collections will require common hyperspectral techniques to be adapted or reformulated. The tensor decomposition, which is also known as multiway analysis, is a technique to decompose multiway arrays, i.e., hypermatrices with more than two dimensions (ways). Hyperspectral time series and multiangular acquisitions can be represented as a three-way tensor. Here, we apply canonical polyadic (CP) tensor decomposition techniques to the blind analysis ohyperspectral big data. In order to do so, we use a novel compression-based nonnegative CP decomposition. We show that the proposed methodology can be interpreted as multilinear blind spectral unmixing, i.e., a higher order extension of the widely known spectral unmixing. In the proposed approach, the big hyperspectral tensor is decomposed in three sets of factors, which can be interpreted as spectral signatures, their spatial distribution, and temporal/angular changes. We provide experimental validation using a study case of the snow coverage of the French Alps during the snow season.