Miguel del Campo
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel del Campo.
Nature Genetics | 2013
Thomas Cullup; Ay Lin Kho; Carlo Dionisi-Vici; Birgit Brandmeier; Frances Smith; Zoe Urry; Michael A. Simpson; Shu Yau; Enrico Bertini; Verity McClelland; Mohammed Al-Owain; Stefan Koelker; Christian Koerner; Georg F. Hoffmann; Frits A. Wijburg; Amber E. ten Hoedt; R. Curtis Rogers; David K. Manchester; Rie Miyata; Masaharu Hayashi; Elizabeth Said; Doriette Soler; Peter M. Kroisel; Christian Windpassinger; Francis M. Filloux; Salwa Al-Kaabi; Jozef Hertecant; Miguel del Campo; Stefan Buk; Istvan Bodi
Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.
Human Molecular Genetics | 2009
Ivon Cuscó; Andrés Medrano; Blanca Gener; Mireia Vilardell; Fátima Gallastegui; Olaya Villa; Eva González; Benjamín Rodríguez-Santiago; Elisabet Vilella; Miguel del Campo; Luis A. Pérez-Jurado
Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.
American Journal of Human Genetics | 2006
Miguel del Campo; Anna Antonell; Luis F. Magano; Francisco J. Muñoz; Raquel Flores; Mònica Bayés; Luis A. Pérez Jurado
Williams-Beuren syndrome (WBS), caused by a heterozygous deletion at 7q11.23, represents a model for studying hypertension, the leading risk factor for mortality worldwide, in a genetically determined disorder. Haploinsufficiency at the elastin gene is known to lead to the vascular stenoses in WBS and is also thought to predispose to hypertension, present in approximately 50% of patients. Detailed clinical and molecular characterization of 96 patients with WBS was performed to explore clinical-molecular correlations. Deletion breakpoints were precisely defined and were found to result in variability at two genes, NCF1 and GTF2IRD2. Hypertension was significantly less prevalent in patients with WBS who had the deletion that included NCF1 (P=.02), a gene coding for the p47(phox) subunit of the NADPH oxidase. Decreased p47(phox) protein levels, decreased superoxide anion production, and lower protein nitrotyrosination were all observed in cell lines from patients hemizygous at NCF1. Our results indicate that the loss of a functional copy of NCF1 protects a proportion of patients with WBS against hypertension, likely through a lifelong reduced angiotensin II-mediated oxidative stress. Therefore, antioxidant therapy that reduces NADPH oxidase activity might have a potential benefit in identifiable patients with WBS in whom serious complications related to hypertension have been reported, as well as in forms of essential hypertension mediated by a similar pathogenic mechanism.
Teratology | 1999
Miguel del Campo; Kenjiro Kosaki; F.C. Bennett; Kenneth Lyons Jones
Maternal exposures to aminopterin and methotrexate have been associated with a pattern of malformation which includes prenatal-onset growth deficiency, severe lack of ossification of the calvarium, hypoplastic supraorbital ridges, small, low-set ears, micrognathia, and limb abnormalities. We report on a patient whose mother received methotrexate during the first trimester of pregnancy and who, in addition to the structural anomalies typical of maternal methotrexate exposure, has significant developmental delay. This is the third patient exposed to folic acid antagonists with mental retardation, providing further evidence that developmental delay is one feature of fetal aminopterin-methotrexate syndrome. Therefore, it is recommended that formal developmental testing be performed in all patients prenatally exposed to methotrexate.
Human Molecular Genetics | 2014
Frank J. Kaiser; Morad Ansari; Diana Braunholz; María Concepción Gil-Rodríguez; Christophe Decroos; Jonathan Wilde; Christopher T. Fincher; Maninder Kaur; Masashige Bando; David J. Amor; Paldeep Singh Atwal; Melanie Bahlo; Christine M. Bowman; Jacquelyn J. Bradley; Han G. Brunner; Dinah Clark; Miguel del Campo; Nataliya Di Donato; Peter Diakumis; Holly Dubbs; David A. Dyment; Juliane Eckhold; Sarah Ernst; Jose Carlos Ferreira; Lauren J. Francey; Ulrike Gehlken; Encarna Guillén-Navarro; Yolanda Gyftodimou; Bryan D. Hall; Raoul C. M. Hennekam
Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.
American Journal of Medical Genetics Part A | 2010
Kenneth Lyons Jones; H. Eugene Hoyme; Luther K. Robinson; Miguel del Campo; Melanie A. Manning; Lela M. Prewitt; Christina D. Chambers
Although the structural phenotype of fetal alcohol syndrome (FAS) is established, prenatal exposure to alcohol may produce a broader spectrum of defects, fetal alcohol spectrum disorder (FASD). Documenting the full spectrum of defects associated with FASD is critical to determining the true incidence of this disorder. We examined 831 children from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders using a structured protocol for diagnosis of FAS using the cardinal facial and growth features, and assessment of additional structural defects thought to occur more often in children with prenatal alcohol exposure. Subjects were classified as FAS, Deferred (some characteristic features of FAS), or No FAS, Groups were compared on prevalence of additional features and number of additional features observed, stratified by diagnostic category, sex, race, and age. Prevalence of most additional features was greatest among subjects with FAS and least among No FAS. A higher frequency of additional features was observed among FAS and Deferred subjects ≥12 years of age than among those under 12. FAS and Deferred Whites had greater frequency of additional features than Cape Colored. Prenatal alcohol exposure may produce a broad spectrum of structural defects that goes beyond FAS with implications regarding the impact of alcohol on the developing fetus, a prerequisite for ultimate prevention of FASD.
American Journal of Medical Genetics Part A | 2010
Valeria Romanelli; Alberta Belinchón; Sara Benito-Sanz; Víctor Martínez-Glez; Ricardo Gracia-Bouthelier; Karen E. Heath; Angel Campos-Barros; Sixto García-Miñaúr; Luis Venancio Oceja Fernández; Heloisa Meneses; Juan Pedro López-Siguero; Encarna Guillén-Navarro; Paulino Gómez-Puertas; Jan-Jaap Wesselink; Graciela Mercado; Rebeca Palomo; Rocío Mena; Aurora Sánchez; Miguel del Campo; Pablo Lapunzina
Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by macroglossia, macrosomia, and abdominal wall defects. It is a multigenic disorder caused in most patients by alterations in growth regulatory genes. A small number of individuals with BWS (5–10%) have mutations in CDKN1C, a cyclin‐dependent kinase inhibitor of G1 cyclin complexes that functions as a negative regulator of cellular growth and proliferation. Here, we report on eight patients with BWS and CDKN1C mutations and review previous reported cases. We analyzed 72 patients (50 BWS, 17 with isolated hemihyperplasia (IH), three with omphalocele, and two with macroglossia) for CDKN1C defects with the aim to search for new mutations and to define genotype–phenotype correlations. Our findings suggest that BWS patients with CDKN1C mutations have a different pattern of clinical malformations than those with other molecular defects. Polydactyly, genital abnormalities, extra nipple, and cleft palate are more frequently observed in BWS with mutations in CDKN1C. The clinical observation of these malformations may help to decide which genetic characterization should be undertaken (i.e., CDKN1C screening), thus optimizing the laboratory evaluation for BWS.
American Journal of Medical Genetics | 1999
Miguel del Campo; Bryan D. Hall; Alec Aeby; Marie-Cécile Nassogne; Alain Verloes; Carmen Roche; Carmen González; Honorio Sanchez; Alfredo Garcia-Alix; Fernando Cabañas; Rosa M. Escudero; Rafael Mas Hernández; José Quero
We report on two sibs and two other unrelated patients with agenesis of corpus callosum, oculocutaneous albinism, repeated infections, and cardiomyopathy. All manifested postnatal growth retardation, microcephaly, and profound developmental delay. Additional central nervous system anomalies present in at least one patient included hypoplasia of the cerebellar vermis, white matter neuronal heterotopia, or bilateral schizencephaly. Repeated viral, bacterial, and fungal infections were consistent with a primary immunodeficiency. However, immunological studies showed variable, nonspecific findings. Cardiomyopathy with progressive heart failure or infection led to death before age 2 years in three of the patients. This syndrome was first described by Vici et al. [1988: Am. J. Med. Genet. 29:1-8]. The four patients reported herein confirm this unique disorder. Affected sibs of both sexes born to unaffected parents provide evidence for autosomal recessive inheritance.
Molecular Autism | 2015
Marta Codina-Solà; Benjamín Rodríguez-Santiago; Aïda Homs; Javier Santoyo; Maria Rigau; Gemma Aznar-Laín; Miguel del Campo; Blanca Gener; Elisabeth Gabau; Maria P. Botella; Armand Gutiérrez-Arumí; Guillermo Antiñolo; Luis A. Pérez-Jurado; Ivon Cuscó
BackgroundAutism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits.MethodsWe performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants.ResultsWe detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance.ConclusionsIntegrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
BMC Medical Genetics | 2008
Ivon Cuscó; Miguel del Campo; Mireia Vilardell; Eva González; Blanca Gener; Enrique Galán; Laura Toledo; Luis A. Pérez-Jurado
BackgroundKabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown.MethodsWe have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited.ResultsNo duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group.ConclusionOur results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.