Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Gueimonde is active.

Publication


Featured researches published by Miguel Gueimonde.


PLOS ONE | 2012

Diversity of Bifidobacteria within the Infant Gut Microbiota

Francesca Turroni; Clelia Peano; Daniel Antony Pass; Elena Foroni; Marco Severgnini; Marcus J. Claesson; Colm Kerr; Jonathan O'b Hourihane; Deirdre M. Murray; Fabio Fuligni; Miguel Gueimonde; Abelardo Margolles; Gianluca De Bellis; Paul W. O’Toole; Douwe van Sinderen; Julian Roberto Marchesi; Marco Ventura

Background The human gastrointestinal tract (GIT) represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus. Methods/Principal Findings In the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland), feeding type (breast milk or formula) and mode of delivery (vaginal or caesarean delivery), while in four cases, faecal samples of corresponding mothers were also analyzed. Conclusions In contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant’s intestine.


Frontiers in Microbiology | 2016

Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health

David Rios-Covian; Patricia Ruas-Madiedo; Abelardo Margolles; Miguel Gueimonde; Clara G. de los Reyes-Gavilán; Nuria Salazar

The colon is inhabited by a dense population of microorganisms, the so-called “gut microbiota,” able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.


Clinical & Experimental Allergy | 2007

Maternal breast‐milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease

M.-M. Grönlund; Miguel Gueimonde; Kirsi Laitinen; G. Kociubinski; T. Grönroos; Seppo Salminen; Erika Isolauri

Background The sources and the impact of maternal bacteria on the initial inoculum of the intestinal microflora of newborn infants remain elusive.


Neonatology | 2007

Breast Milk: A Source of Bifidobacteria for Infant Gut Development and Maturation?

Miguel Gueimonde; Kirsi Laitinen; Seppo Salminen; Erika Isolauri

Background: The establishment of gut microbiota is a stepwise process contributing to gut development and maturation of the immune system. Aberrant gut microbiota at an early age may predispose to disease later in life. Breast-fed infants harbor a characteristic intestinal microbiota dominated by bifidobacteria. Objectives: To assess, using molecular techniques (PCR), whether human milk contains bifidobacteria and to determine the bifidobacterial species present. Methods: The presence of bifidobacteria in breast milk samples (n = 20) was qualitatively and quantitatively determined by using PCR and real-time PCR, respectively. Results: Breast milk samples contained bifidobacteria. Bifidobacterium longum was the most widely found species followed by Bifidobacterium animalis, Bifidobacterium bifidum and Bifidobacterium catenulatum. Conclusion: Breast milk contains bifidobacteria and specific Bifidobacterium species that may promote healthy microbiota development.


Anaerobe | 2010

Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut.

Gonzalo Solís; C.G. de los Reyes-Gavilán; Nuria Fernández; Abelardo Margolles; Miguel Gueimonde

The initial establishment of lactic acid bacteria (LAB) and bifidobacteria in the newborn and the role of breast-milk as a source of these microorganisms are not yet well understood. The establishment of these microorganisms during the first 3 months of life in 20 vaginally delivered breast-fed full-term infants, and the presence of viable Bifidobacterium in the corresponding breast-milk samples was evaluated. In 1 day-old newborns Enterococcus and Streptococcus were the microorganisms most frequently isolated, from 10 days of age until 3 months bifidobacteria become the predominant group. In breast-milk, Streptococcus was the genus most frequently isolated and Lactobacillus and Bifidobacterium were also obtained. Breast-milk contains viable lactobacilli and bifidobacteria that might contribute to the initial establishment of the microbiota in the newborn.


Journal of Food Protection | 2006

Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus

Patricia Ruas-Madiedo; Miguel Gueimonde; Abelardo Margolles; Clara G. de los Reyes-Gavilán; Seppo Salminen

Exopolysaccharides (EPSs) are exocellular polymers present in the surface of many bacteria, including Lactobacillus and Bifidobacterium. The genome sequence of several strains revealed the presence of EPS-encoding genes. However, the physiological role that EPSs play in the bacterial ecology still remains uncertain. In this study, we have assessed the effect of EPSs produced by Lactobacillus rhamnosus GG, Bifidobacterium longum NB667, and Bifidobacterium animalis IPLA-R1 on the adhesion of probiotic and enteropathogen strains to human intestinal mucus. The EPS fraction GG had no significant effect on the adhesion of L. rhamnosus GG and B. animalis IPLA-R1. However, the EPS fractions NB667 and IPLA-R1 significantly reduced the adherence of both probiotic strains. In contrast, the three EPS fractions increased the adhesion of Enterobacter sakazakii ATCC 29544 and Escherichia coli NCTC 8603. Higher adherence of Salmonella enterica serovar Typhimurium ATCC 29631 and Clostridium difficile ATCC 9689 was detected in the presence of the EPS fractions GG and NB667. In general, these effects were obtained at EPS concentrations of up to 5 mg/ml, and they were EPS dose dependent. The competitive exclusion of probiotics in the presence of EPS could suggest the involvement of these biopolymers in the adhesion to mucus. The increase in the adherence of enteropathogens could be explained if components of the pathogen surface are able to bind to specific EPSs and the bound EPSs are able to adhere to mucus. To the best of our knowledge, this is the first work reporting the effect of EPSs from probiotics on bacterial adhesion properties.


Applied and Environmental Microbiology | 2004

New Real-Time Quantitative PCR Procedure for Quantification of Bifidobacteria in Human Fecal Samples

Miguel Gueimonde; Satu Tölkkö; Teemu Korpimäki; Seppo Salminen

ABSTRACT The application of a real-time quantitative PCR method (5′ nuclease assay), based on the use of a probe labeled at its 5′ end with a stable, fluorescent lanthanide chelate, for the quantification of human fecal bifidobacteria was evaluated. The specificities of the primers and the primer-probe combination were evaluated by conventional PCR and real-time PCR, respectively. The results obtained by real-time PCR were compared with those obtained by fluorescent in situ hybridization, the current gold standard for intestinal microbiota quantification. In general, a good correlation between the two methods was observed. In order to determine the detection limit and the accuracy of the real-time PCR procedure, germfree rat feces were spiked with known amounts of bifidobacteria and analyzed by both methods. The detection limit of the method used in this study was found to be about 5 × 104 cells per g of feces. Both methods, real-time PCR and fluorescent in situ hybridization, led to an accurate quantification of the spiked samples with high levels of bifidobacteria, but real-time PCR was more accurate for samples with low levels. We conclude that the real-time PCR procedure described here is a specific, accurate, rapid, and easy method for the quantification of bifidobacteria in feces.


Journal of Food Protection | 2005

Adhesion of Selected Bifidobacterium Strains to Human Intestinal Mucus and the Role of Adhesion in Enteropathogen Exclusion

M. Carmen Collado; Miguel Gueimonde; Manuel Hernández; Yolanda Sanz; Seppo Salminen

The ability of potential probiotic strains to adhere to the intestinal mucosa and exclude and displace pathogens is of utmost importance for therapeutic manipulation of the enteric microbiota. The ability of seven selected human bifidobacterial strains and five human enteropathogenic strains to adhere to human intestinal mucus was analyzed and compared with that of four strains isolated from chicken intestines. The adhesion of the bifidobacterial strains ranged from 3 to 16% depending on the strain. Bifidobacterium strains of animal origin adhered significantly better than did strains of human origin. Of the pathogenic bacteria, Escherichia coli NCTC 8603 had the highest adhesion value (20%), Salmonella Typhimurium ATCC 29631, Enterobacter sakazakii ATCC 29544, and Clostridium difficile ATCC 9689 had adhesion values ranging from 10 to 15%, and Listeria monocytogenes ATCC 15313 had the lowest adhesive value (3%). The ability of these bifidobacteria to inhibit pathogen adhesion and to displace pathogens previously adhering to mucus was also tested. The inhibition of pathogens adhesion by these bifidobacterial strains was variable and clearly strain dependent. In general, bifidobacterial strains of animal origin were better able to inhibit and displace pathogens than were human strains. Preliminary characterization of bacterial adhesion was accomplished using different pretreatments to explore adhesion mechanisms. The results indicate that different molecules are implicated in the adhesion of bifidobacteria to the human intestinal mucus, constituting a multifactorial process.


Applied and Environmental Microbiology | 2008

Exopolysaccharides Produced by Intestinal Bifidobacterium Strains Act as Fermentable Substrates for Human Intestinal Bacteria

Nuria Salazar; Miguel Gueimonde; Ana María Hernández-Barranco; Patricia Ruas-Madiedo; Clara G. de los Reyes-Gavilán

This work was financially supported by European Union FEDER founds and by the Spanish Ministry of Education and Science (MEC) under projects AGL2004-06088-C02- 01/ALI and AGL2007-62736. M. Gueimonde was the recipient of a Juan de la Cierva postdoctoral contract from MEC and N. Salazar acknowledges the same institution for her predoctoral fellowship (FPI program).ABSTRACT Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations.


Mbio | 2014

Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus

Arancha Hevia; Christian Milani; Patricia López; Adriana Cuervo; Silvia Arboleya; Sabrina Duranti; Francesca Turroni; Sonia González; Ana Suárez; Miguel Gueimonde; Marco Ventura; Borja Sánchez; Abelardo Margolles

ABSTRACT Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease in humans and is characterized by the presence of hyperactive immune cells and aberrant antibody responses to nuclear and cytoplasmic antigens, including characteristic anti–double-stranded DNA antibodies. We performed a cross-sectional study in order to determine if an SLE-associated gut dysbiosis exists in patients without active disease. A group of 20 SLE patients in remission, for which there was strict inclusion and exclusion criteria, was recruited, and we used an optimized Ion Torrent 16S rRNA gene-based analysis protocol to decipher the fecal microbial profiles of these patients and compare them with those of 20 age- and sex-matched healthy control subjects. We found diversity to be comparable based on Shannon’s index. However, we saw a significantly lower Firmicutes/Bacteroidetes ratio in SLE individuals (median ratio, 1.97) than in healthy subjects (median ratio, 4.86; P < 0.002). A lower Firmicutes/Bacteroidetes ratio in SLE individuals was corroborated by quantitative PCR analysis. Notably, a decrease of some Firmicutes families was also detected. This dysbiosis is reflected, based on in silico functional inference, in an overrepresentation of oxidative phosphorylation and glycan utilization pathways in SLE patient microbiota. IMPORTANCE Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders. Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders.

Collaboration


Dive into the Miguel Gueimonde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abelardo Margolles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Ruas-Madiedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Borja Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Nuria Salazar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge