Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel López-Lázaro is active.

Publication


Featured researches published by Miguel López-Lázaro.


Mini-reviews in Medicinal Chemistry | 2009

Distribution and Biological Activities of the Flavonoid Luteolin

Miguel López-Lázaro

Epidemiological evidence suggests that flavonoids may play an important role in the decreased risk of chronic diseases associated with a diet rich in plant-derived foods. Flavonoids are also common constituents of plants used in traditional medicine to treat a wide range of diseases. The purpose of this article is to summarize the distribution and biological activities of one of the most common flavonoids: luteolin. This flavonoid and its glycosides are widely distributed in the plant kingdom; they are present in many plant families and have been identified in Bryophyta, Pteridophyta, Pinophyta and Magnoliophyta. Dietary sources of luteolin include, for instance, carrots, peppers, celery, olive oil, peppermint, thyme, rosemary and oregano. Preclinical studies have shown that this flavone possesses a variety of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial and anticancer activities. The ability of luteolin to inhibit angiogenesis, to induce apoptosis, to prevent carcinogenesis in animal models, to reduce tumor growth in vivo and to sensitize tumor cells to the cytotoxic effects of some anticancer drugs suggests that this flavonoid has cancer chemopreventive and chemotherapeutic potential. Modulation of ROS levels, inhibition of topoisomerases I and II, reduction of NF-kappaB and AP-1 activity, stabilization of p53, and inhibition of PI3K, STAT3, IGF1R and HER2 are possible mechanisms involved in the biological activities of luteolin.


Mini-reviews in Medicinal Chemistry | 2011

A Review on the Dietary Flavonoid Kaempferol

José Manuel Calderón-Montaño; Estefanía Burgos-Morón; Concepción Pérez-Guerrero; Miguel López-Lázaro

Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.


Molecular Nutrition & Food Research | 2008

Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent

Miguel López-Lázaro

A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.


Anti-cancer Agents in Medicinal Chemistry | 2008

The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?

Miguel López-Lázaro

Cells can obtain energy through the oxygen-dependent pathway of oxidative phosphorylation (OXPHOS) and through the oxygen-independent pathway of glycolysis. Since OXPHOS is more efficient in generating ATP than glycolysis, it is recognized that the presence of oxygen results in the activation of OXPHOS and the inhibition of glycolysis (Pasteur effect). However, it has been known for many years that cancer cells and non-malignant proliferating cells can activate glycolysis in the presence of adequate oxygen levels (aerobic glycolysis or Warburg effect). Accumulating evidence suggests that the persistent activation of aerobic glycolysis in tumor cells plays a crucial role in cancer development; the inhibition of the increased glycolytic capacity of malignant cells may therefore represent a key anticancer strategy. Although some important knowledge has been gained in the last few years on this growing field of research, the basis of the Warburg effect still remains poorly understood. This communication analyzes why cancer cells switch from OXPHOS to glycolysis in the presence of adequate oxygen levels, and how these cells manage to avoid the inhibition of glycolysis induced by oxygen. Several strategies and drugs that may interfere with the glycolytic metabolism of cancer cells are also shown. This information may help develop anticancer approaches that may have clinical relevance.


International Journal of Cancer | 2010

The dark side of curcumin.

Estefanía Burgos-Morón; José Manuel Calderón-Montaño; J. Salvador; Antonio Robles; Miguel López-Lázaro

Dear Editor, Curcumin is a yellow–orange pigment obtained from the plant Curcuma longa. The powdered rhizome of this plant, called turmeric, is a common ingredient in curry powders and has a long history of use in traditional Asian medicine for a wide variety of disorders. In the last decade a large number of reports have been published on the beneficial effects of curcumin, and it has repeatedly been claimed that this natural product is efficient and safe for the prevention and treatment of several diseases including cancer. It is not surprising, therefore, that curcumin is currently sold as a dietary supplement and that numerous clinical trials are ongoing or recruiting participants to evaluate curcumin activity. But there is accumulating evidence that curcumin may not be so effective and safe. Because such evidence is not generally acknowledged, the purpose of this letter is to briefly review the negative properties of curcumin so that they can be balanced against its beneficial effects. Most of the evidence that supports the therapeutic potential of curcumin is mainly based on in vitro studies in which curcumin was tested at concentrations in the micromolar range. Several reports have demonstrated, however, that the plasma concentrations of curcumin in people taking relatively high oral doses of this compound are very low, typically in the nanomolar range (reviewed in Ref. 4). For instance, a recent study examined the pharmacokinetics of a curcumin preparation in 12 healthy human volunteers 0.25–72 hr after an oral dose of 10 or 12 g. Using a high-performance liquid chromatography assay with a limit of detection of 50 ng mL , only 1 subject had detectable free curcumin at any of the time points assayed. The fact that curcumin also undergoes extensive metabolism in intestine and liver means that high concentrations of curcumin cannot be achieved and maintained in plasma and tissues after oral ingestion. This is a major obstacle for the clinical development of this agent and suggests that the therapeutic potential of oral curcumin is limited. The low clinical efficiency of curcumin in the treatment of several chronic diseases such as Alzheimer’s disease and cardiovascular diseases has been discussed recently. As far as cancer is concerned, in vitro studies have demonstrated that cancer cells do not die unless they are exposed to curcumin concentrations of 5–50 lM for several hours. Because of its poor bioavailability, these concentrations are not achieved outside the gastrointestinal tract when curcumin is taken orally. Because of its extensive metabolism in intestine and liver, these concentrations cannot be maintained for several hours in the gastrointestinal tract. This suggests that the chemotherapeutic potential of oral curcumin is limited even for the treatment of cancers of the gastrointestinal tract. Accordingly, when 15 patients with advanced colorectal cancer were treated with curcumin at daily doses of 3.6 g for up to 4 months, no partial responses to treatment or decreases in tumor markers were observed. A search of the website www.clinicaltrials.gov in July 2009 showed 34 clinical trials using curcumin in a wide variety of diseases, particularly in cancer. In some of these trials, patients with several types of cancer are receiving or will receive curcumin through the oral route. For instance, in an ongoing Phase II clinical trial (NCT00094445), participants with pancreatic cancer are receiving 8 g of curcumin by mouth every day for several 8-week-periods. As discussed before, the plasma concentrations of curcumin in people taking relatively high oral doses of curcumin are very low, typically in the nanomolar range. This means that the oral administration of curcumin does not lead to cytotoxic concentrations outside the gastrointestinal tract. If one assumes that tumor cell death is necessary to achieve an efficient therapeutic response, one should not expect a very positive outcome from this trial. A Phase II Trial is also recruiting participants to test if a daily oral dose of 8 g of curcumin can improve the efficacy of the standard chemotherapy gemcitabine in patients with locally advanced or metastatic adenocarcinoma of the pancreas (NCT00192842). The rationale for this trial is based on in vitro and in vivo data that suggest that noncytotoxic concentrations of curcumin may sensitize cancer cells to the effects of anticancer drugs such as gemcitabine. Although a daily dose of 1 g kg 1 of curcumin increased the antitumor effects of gemcitabine in an orthotopic model of pancreatic cancer, this dose of curcumin (e.g. 70 g in a 70-kg person) is almost 10 times higher than that used in the clinical trial testing the combination of curcumin and gemcitabine (8 g). This makes the outcome of this trial uncertain, as curcumin can either increase or reduce the efficiency of chemotherapy depending on the concentration at which it is used. Several strategies have been proposed to overcome the low oral bioavailability of curcumin. One of these strategies has entered clinical trials and consists of using the black pepper alkaloid piperine (bioperine) to increase the bioavailability of curcumin. This strategy, however, should be used cautiously, as piperine is a potent inhibitor of drug Le tt er s to th e E di to r


Expert Opinion on Therapeutic Targets | 2007

Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved.

Miguel López-Lázaro

Accumulating preclinical and clinical data suggest that the cardiac drug digitoxin might be used in cancer therapy. Recent reports have shown that digitoxin can inhibit the growth and induce apoptosis in cancer cells at concentrations commonly found in the plasma of cardiac patients treated with this drug. Several mechanisms have been associated with the anticancer activity of digitoxin, yet at present it is unknown why malignant cells are more susceptible to this cardiac glycoside than non-malignant cells. This report analyses the possible anticancer mechanisms of digitoxin and proposes that the inhibition of glycolysis may be a key mechanism by which this natural product selectively targets cancer cells. Finally, whether or not there is enough evidence to support the clinical evaluation of digitoxin in patients with cancer is discussed.


Journal of Ethnopharmacology | 2003

Cytotoxic effect of Plantago spp. on cancer cell lines

Marina Gálvez; Carmen Martín-Cordero; Miguel López-Lázaro; Felipe Cortés; María Jesús Ayuso

Methanolic extracts from seven Plantago species used in traditional medicine for the treatment of cancer, were evaluated for cytotoxic activity against three human cancer cell lines recommended by the National Cancer Institute (NCI, USA). The results showed that Plantago species exhibited cytotoxic activity, showing a certain degree of selectivity against the tested cells in culture. Since the flavonoids are able to strongly inhibit the proliferation of human cancer cell lines, we have identified luteolin-7-O-beta-glucoside as major flavonoid present in most of the Plantago species. Also, we have evaluated this compound and its aglycon, luteolin, for their cytotoxic and DNA topoisomerase I poisons activities. These results could justify the traditional use of the Plantago species and topoisomerase-mediated DNA damage might be a possible mechanism by which flavonoids of Plantago exert their cytotoxicity potential.


The FASEB Journal | 2006

HIF-1: hypoxia-inducible factor or dysoxia-inducible factor?

Miguel López-Lázaro

Hypoxia‐inducible factor 1 (HIF‐1) activates the transcription of genes involved in diverse aspects of cellular and integrative physiology, including energy metabolism, cell growth, survival, invasion, migration or angiogenesis. The activity of this transcription factor is known to be increased by hypoxia, but also by a growing number of apparently unrelated factors that can activate it even in nonhypoxic conditions. Here I propose a model in which an alteration in oxygen metabolism is the key cellular event involved in HIF‐1 activation under hypoxic and nonhypoxic conditions. This new perspective unifies previously unrelated observations and predicts cellular processes and therapeutic strategies that may modify HIF‐1 activity. This may have relevance, for instance, to cancer, as HIF‐1 overexpression is observed in many human cancers and has been associated with increased patient mortality. López‐Lázaro, M. HIF‐1: hypoxia‐inducible factor or dysoxia‐inducible factor? FASEB J. 20, 828–832 (2006)


Journal of Enzyme Inhibition and Medicinal Chemistry | 2003

Curcumin as a DNA topoisomerase II poison

Carmen Martín-Cordero; Miguel López-Lázaro; Marina Gálvez; María Jesús Ayuso

Curcumin, the major active component of the spice turmeric, is recognised as a safe compound with great potential for cancer chemoprevention and cancer therapy. It induces apoptosis, but its initiation mechanism remains poorly understood. Curcumin has been assessed on the human cancer cell lines, TK-10, MCF-7 and UACC-62, and their IC50 values were 12.16, 3.63, 4.28 μM respectively. The possibility of this compound being a topoisomerase II poison has also been studied and it was found that 50 μM of curcumin is active in a similar fashion to the antineoplastic agent etoposide. These results point to DNA damage induced by topoisomerase II poisoning as a possible mechanism by which curcumin initiates apoptosis, and increase the evidence suggesting its possible use in cancer therapy.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010

The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells.

Miguel López-Lázaro; Elaine Willmore; Caroline A. Austin

DNA topoisomerases (topos) are the target of several drugs commonly used in cancer chemotherapy; these drugs induce topo-DNA complexes with either topo I or topo II that eventually trigger cell death. The inhibition of these enzymes induces DNA alterations that may also lead to carcinogenic effects; indeed, an increased risk for developing leukemia has been observed in patients treated with some topo II inhibitors. Several flavonoids have been shown to interact with purified topo I and topo II, therefore suggesting that these compounds may possess both anticancer and carcinogenic activity. Because the activity of a drug on purified topoisomerases does not always represent the activity in the cell, the aim of this work is to evaluate the effects of several common dietary flavonoids on these enzymes in cells. Using the cell-based TARDIS assay, we have evaluated the effects of the flavonoids quercetin, apigenin, fisetin and myricetin on topo I and topo II in K562 human leukemia cells at several concentrations and exposure times. Quercetin and apigenin induced moderate levels of topo II-DNA complexes and did not induce topo I-DNA complexes in these cells. Fisetin induced neither topo I- nor topo II-DNA complexes, but behaved as a catalytic inhibitor of both enzymes. Myricetin induced high levels of topo-DNA complexes with both enzymes. In addition, murine embryo fibroblasts lacking topo IIbeta were resistant to myricetin-induced cell-growth inhibition, therefore suggesting that topo IIbeta is an important drug target for this flavonoid. These results support the idea that specific concentrations of some dietary flavonoids may produce topoisomerase-mediated carcinogenic and chemotherapeutic effects in vivo. The ability of myricetin to induce topo-DNA complexes with both topo I and topo II in leukemia cells may be therapeutically useful and deserves further study.

Collaboration


Dive into the Miguel López-Lázaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge