Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel M. Erenas is active.

Publication


Featured researches published by Miguel M. Erenas.


Analytical Chemistry | 2014

Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices

Nuria López-Ruiz; Vincenzo F. Curto; Miguel M. Erenas; Fernando Benito-Lopez; Dermot Diamond; Alberto J. Palma; L.F. Capitán-Vallvey

In this work, an Android application for measurement of nitrite concentration and pH determination in combination with a low-cost paper-based microfluidic device is presented. The application uses seven sensing areas, containing the corresponding immobilized reagents, to produce selective color changes when a sample solution is placed in the sampling area. Under controlled conditions of light, using the flash of the smartphone as a light source, the image captured with the built-in camera is processed using a customized algorithm for multidetection of the colored sensing areas. The developed image-processing allows reducing the influence of the light source and the positioning of the microfluidic device in the picture. Then, the H (hue) and S (saturation) coordinates of the HSV color space are extracted and related to pH and nitrite concentration, respectively. A complete characterization of the sensing elements has been carried out as well as a full description of the image analysis for detection. The results show good use of a mobile phone as an analytical instrument. For the pH, the resolution obtained is 0.04 units of pH, 0.09 of accuracy, and a mean squared error of 0.167. With regard to nitrite, 0.51% at 4.0 mg L(-1) of resolution and 0.52 mg L(-1) as the limit of detection was achieved.


Analytical Chemistry | 2010

Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors

K. Cantrell; Miguel M. Erenas; I. de Orbe-Payá; L.F. Capitán-Vallvey

The hue or H component of the hue, saturation, value (HSV) color space has been studied as a quantitative analytical parameter for bitonal optical sensors. The robust nature of this parameter provides superior precision for the measurement of sensors which change colors with the speciation of some indicator molecule. This parameter has been compared to red, green, blue (RGB) intensity and RGB absorbance along with differences and ratios of both intensity and absorbance and has been demonstrated to be 2 to 3 times superior. The H value maintains this superior precision with variations in indicator concentration, membrane thickness, detector spectral responsivity, and illumination. Because this parameter is stable, simple to calculate, easily obtained from commercial devices such as scanners and digital cameras, continuous over the entire color gamut, and bound between values of 0 and 1, it shows great promise for use in a variety of sensing applications including imaging, automated analysis, pharmaceutical sensing, lab-on-a-chip devices, and quality control applications.


Analytica Chimica Acta | 2015

Recent developments in computer vision-based analytical chemistry: A tutorial review

L.F. Capitán-Vallvey; Nuria López-Ruiz; A. Martínez-Olmos; Miguel M. Erenas; Alberto J. Palma

Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed.


Analytical Chemistry | 2016

Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis

Miguel M. Erenas; Ignacio de Orbe-Payá; L.F. Capitán-Vallvey

This paper presents a thread-based microfluidic device (μTAD) that includes ionophore extraction chemistry for the optical recognition of potassium. The device is 1.5 cm × 1.0 cm and includes a cotton thread to transport the aqueous sample via capillary wicking to a 5 mm-long detection area, where the recognition chemistry is deposited that reaches equilibrium in 60 s, changing its color between blue and magenta. A complete characterization of the cotton thread used as well as the sensing element has been carried out. The imaging of the μTAD with a digital camera and the extraction of the H coordinate of the HSV color space used as the analytical parameter make it possible to determine K(I) between 2.4 × 10(-5) and 0.95 M with a precision better than 1.3%.


Analytica Chimica Acta | 2011

A surface fit approach with a disposable optical tongue for alkaline ion analysis

Miguel M. Erenas; O. Piñeiro; M.C. Pegalajar; Manuel Pegalajar Cuéllar; I. de Orbe-Payá; L.F. Capitán-Vallvey

A disposable optical tongue for the alkaline ions Na(I) and K(I) is described. The two-sensor layout prepared on a transparent support consists of non-specific polymeric membranes working by ionophore-chromoionophore chemistry. The non-specific behavior of the membranes was controlled by means of the crown ether-type ionophore present. The imaging of the tongue, after reaction for 3 min with the unknown solution, by means of a conventional flatbed scanner working by transmission mode, makes it possible to calculate the H (hue) value of the hue, saturation, value (HSV) color space used as a robust and precise analytical parameter. The modelling of the response of the two-sensor tongue as a sigmoidal surface is used to characterize the behavior of the tongue and as a basis to infer the concentration values. To compute the concentration of two analytes from the two hue values obtained using the optical tongue, a surface fit approach was used. The tongue works over a wide dynamic range (1.0×10(-4)-0.1 M both in Na(I) and K(I)). The sensing membranes show good intramembrane (1.4% RSD) and intermembrane precision (0.71% RSD) and lifetime (around 45 days in darkness). The procedure was used to analyze Na(I) and K(I) in different types of natural waters (tap and mineral), validating the results against a reference procedure.


Analytical Chemistry | 2017

Flexible Passive near Field Communication Tag for Multigas Sensing

P. Escobedo; Miguel M. Erenas; Nuria López-Ruiz; M. A. Carvajal; S. Gonzalez-Chocano; I. de Orbe-Payá; L. F. Capitán-Valley; Alberto J. Palma; A. Martínez-Olmos

In this work we present a full-passive flexible multigas sensing tag for the determination of oxygen, carbon dioxide, ammonia, and relative humidity readable by a smartphone. This tag is based on near field communication (NFC) technology for energy harvesting and data transmission to a smartphone. The gas sensors show an optic response that is read through high-resolution digital color detectors. A white LED is used as the common optical excitation source for all the sensors. Only a reduced electronics with very low power consumption is required for the reading of the optical responses and data transmission to a remote user. An application for the Android operating system has been developed for the power supplying and data reception from the tag. The responses of the sensors have been calibrated and fitted to simple functions, allowing a fast prediction of the gases concentration. Cross-sensitivity has also been evaluated, finding that in most of the cases it is negligible or easily correctable using the rest of the readings. The election of the target gases has been due to their importance in the monitoring of modified atmosphere packaging. The resolutions and limits of detection measured are suitable for such kinds of applications.


Journal of Sensors | 2016

Computer Vision-Based Portable System for Nitroaromatics Discrimination

Nuria López-Ruiz; Miguel M. Erenas; Ignacio de Orbe-Payá; L.F. Capitán-Vallvey; Alberto J. Palma; A. Martínez-Olmos

A computer vision-based portable measurement system is presented in this report. The system is based on a compact reader unit composed of a microcamera and a Raspberry Pi board as control unit. This reader can acquire and process images of a sensor array formed by four nonselective sensing chemistries. Processing these array images it is possible to identify and quantify eight different nitroaromatic compounds (both explosives and related compounds) by using chromatic coordinates of a color space. The system is also capable of sending the obtained information after the processing by a WiFi link to a smartphone in order to present the analysis result to the final user. The identification and quantification algorithm programmed in the Raspberry board is easy and quick enough to allow real time analysis. Nitroaromatic compounds analyzed in the range of mg/L were picric acid, 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 3,5-dinitrobenzonitrile (3,5-DNBN), 2-chloro-3,5-dinitrobenzotrifluoride (2-C-3,5-DNBF), 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), and tetryl (TT).


Sensors and Actuators B-chemical | 2011

Mobile phone platform as portable chemical analyzer

Antonio G. García; Miguel M. Erenas; Eugenio D. Marinetto; Carlos A. Abad; Ignacio de Orbe-Payá; Alberto J. Palma; L.F. Capitán-Vallvey


Sensors and Actuators B-chemical | 2007

Potassium disposable optical sensor based on transflectance and cromaticity measurements

I. de Orbe-Payá; Miguel M. Erenas; L.F. Capitán-Vallvey


Sensors and Actuators B-chemical | 2012

Use of digital reflection devices for measurement using hue-based optical sensors

Miguel M. Erenas; K. Cantrell; J. Ballesta-Claver; I. de Orbe-Payá; L.F. Capitán-Vallvey

Collaboration


Dive into the Miguel M. Erenas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge