Miguel Maroto
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Maroto.
Cell | 1997
Miguel Maroto; Ram Reshef; Andrea Münsterberg; Susan E. Koester; Martyn Goulding; Andrew B. Lassar
To understand how the skeletal muscle lineage is induced during vertebrate embryogenesis, we have sought to identify the regulatory molecules that mediate induction of the myogenic regulatory factors MyoD and Myf-5. In this work, we demonstrate that either signals from the overlying ectoderm or Wnt and Sonic hedgehog signals can induce somitic expression of the paired box transcription factors, Pax-3 and Pax-7, concomitant with expression of Myf-5 and prior to that of MyoD. Moreover, infection of embryonic tissues in vitro with a retrovirus encoding Pax-3 is sufficient to induce expression of MyoD, Myf-5, and myogenin in both paraxial and lateral plate mesoderm in the absence of inducing tissues as well as in the neural tube. Together, these findings imply that Pax-3 may mediate activation of MyoD and Myf-5 in response to muscle-inducing signals from either the axial tissues or overlying ectoderm and identify Pax-3 as a key regulator of somitic myogenesis.
Nature | 2003
J. K. Dale; Miguel Maroto; M.-L. Dequeant; Pascale Malapert; Mike McGrew; Olivier Pourquié
The segmented aspect of the vertebrate body plan first arises through the sequential formation of somites. The periodicity of somitogenesis is thought to be regulated by a molecular oscillator, the segmentation clock, which functions in presomitic mesoderm cells. This oscillator controls the periodic expression of ‘cyclic genes’, which are all related to the Notch pathway. The mechanism underlying this oscillator is not understood. Here we show that the protein product of the cyclic gene lunatic fringe (Lfng), which encodes a glycosyltransferase that can modify Notch activity, oscillates in the chick presomitic mesoderm. Overexpressing Lfng in the paraxial mesoderm abolishes the expression of cyclic genes including endogenous Lfng and leads to defects in segmentation. This effect on cyclic genes phenocopies inhibition of Notch signalling in the presomitic mesoderm. We therefore propose that Lfng establishes a negative feedback loop that implements periodic inhibition of Notch, which in turn controls the rhythmic expression of cyclic genes in the chick presomitic mesoderm. This feedback loop provides a molecular basis for the oscillator underlying the avian segmentation clock.
Current Topics in Developmental Biology | 2001
Miguel Maroto; Olivier Pourquié
Somites are transient embryonic structures that are formed from the unsegmented presomitic mesoderm (PSM) in a highly regulated process called somitogenesis. Somite, formation can be considered as the result of several sequential processes: generation of a basic metameric pattern, specification of the antero-posterior identity of each somite, and, finally, formation of the somitic border. Evidence for the existence of a molecular clock or oscillator linked to somitogenesis has been provided by the discovery of the rhythmic and dynamic expression in the PSM of c-hairy1 and lunatic fringe, two genes potentially related to the Notch signaling pathway. These oscillating expression patterns suggest that an important role of the molecular clock could reside in the temporal control of periodic Notch activation, ultimately resulting in the regular array of the somites. We discuss both the importance of the Notch signaling pathway in the molecular events of somitogenesis and its relationship with the molecular clock, and, finally, in that context we review a number of other genes known to play a role in somitogenesis.
PLOS Genetics | 2009
Zoltan Ferjentsik; Shinichi Hayashi; J. Kim Dale; Yasumasa Bessho; An Herreman; Bart De Strooper; Gonzalo del Monte; José Luis de la Pompa; Miguel Maroto
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.
Developmental Biology | 2009
Sarah Gibb; Anna Zagórska; Kristin Melton; Gennady Tenin; Irene Vacca; Paul A. Trainor; Miguel Maroto; J. Kim Dale
Somites are embryonic precursors of the ribs, vertebrae and certain dermis tissue. Somite formation is a periodic process regulated by a molecular clock which drives cyclic expression of a number of clock genes in the presomitic mesoderm. To date the mechanism regulating the period of clock gene oscillations is unknown. Here we show that chick homologues of the Wnt pathway genes that oscillate in mouse do not cycle across the chick presomitic mesoderm. Strikingly we find that modifying Wnt signalling changes the period of Notch driven oscillations in both mouse and chick but these oscillations continue. We propose that the Wnt pathway is a conserved mechanism that is involved in regulating the period of cyclic gene oscillations in the presomitic mesoderm.
Trends in Cell Biology | 2010
Sarah Gibb; Miguel Maroto; J. Kim Dale
The vertebrate segmentation clock is a molecular oscillator that regulates the periodicity of somite formation. Three signalling pathways have been proposed to underlie the molecular mechanism of the oscillator, namely the Notch, Wnt and Fgf pathways. Characterizing the roles and hierarchy of these three pathways in the oscillator mechanism is currently the focus of intense research. Recent publications report the first identification of a molecular mechanism involved in the regulation of the pace of this oscillator. We review these and other recent findings regarding the interaction between the three pathways in the oscillator mechanism that have significantly expanded our understanding of the segmentation clock.
BMC Developmental Biology | 2010
Gennady Tenin; David Wright; Zoltan Ferjentsik; Robert Bone; Mike McGrew; Miguel Maroto
BackgroundSomitogenesis is the earliest sign of segmentation in the developing vertebrate embryo. This process starts very early, soon after gastrulation has initiated and proceeds in an anterior-to-posterior direction during body axis elongation. It is widely accepted that somitogenesis is controlled by a molecular oscillator with the same periodicity as somite formation. This periodic mechanism is repeated a specific number of times until the embryo acquires a defined specie-specific final number of somites at the end of the process of axis elongation. This final number of somites varies widely between vertebrate species. How termination of the process of somitogenesis is determined is still unknown.ResultsHere we show that during development there is an imbalance between the speed of somite formation and growth of the presomitic mesoderm (PSM)/tail bud. This decrease in the PSM size of the chick embryo is not due to an acceleration of the speed of somite formation because it remains constant until the last stages of somitogenesis, when it slows down. When the chick embryo reaches its final number of somites at stage HH 24-25 there is still some remaining unsegmented PSM in which expression of components of the somitogenesis oscillator is no longer dynamic. Finally, we identify a change in expression of retinoic acid regulating factors in the tail bud at late stages of somitogenesis, such that in the chick embryo there is a pronounced onset of Raldh2 expression while in the mouse embryo the expression of the RA inhibitor Cyp26A1 is downregulated.ConclusionsOur results show that the chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. In addition, endogenous retinoic acid is probably also involved in the termination of the process of segmentation, and in tail growth in general.
PLOS ONE | 2011
Alan J. Terry; Marc Sturrock; J. Kim Dale; Miguel Maroto; Mark A. J. Chaplain
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.
PLOS ONE | 2009
Shinichi Hayashi; Taiju Shimoda; Masato Nakajima; Yuki Tsukada; Yuichi Sakumura; J. Kim Dale; Miguel Maroto; Kenji Kohno; Takaaki Matsui; Yasumasa Bessho
Background During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways. Principal Findings Here, we show that the expression of Sprouty4, which encodes an FGF inhibitor, oscillates in 2-h cycles in the mouse PSM in synchrony with other oscillating genes from the Notch signaling pathway, such as lunatic fringe. Sprouty4 does not oscillate in Hes7-null mutant mouse embryos, and Hes7 can inhibit FGF-induced transcriptional activity of the Sprouty4 promoter. Conclusions Thus, periodic expression of Sprouty4 is controlled by the Notch segmentation clock and may work as a mediator that links the temporal periodicity of clock gene oscillations with the spatial periodicity of boundary formation which is regulated by the gradient of FGF/Wnt activity.
Developmental Dynamics | 2009
David Wright; Zoltan Ferjentsik; Shang-Wei Chong; Xuehui Qiu; Yun-Jin Jiang; Pascale Malapert; Olivier Pourquié; Nick Van Hateren; Stuart A. Wilson; Claudio A. Franco; Holger Gerhardt; J. Kim Dale; Miguel Maroto
Somites are formed progressively from the presomitic mesoderm (PSM) in a highly regulated process according to a strict periodicity driven by an oscillatory mechanism. The Notch and Wnt pathways are key components in the regulation of this somitic oscillator and data from Xenopus and zebrafish embryos indicate that the Notch‐downstream target Nrarp participates in the regulation of both activities. We have analyzed Nrarp/nrarp‐a expression in the PSM of chick, mouse and zebrafish embryos, and we show that it cycles in synchrony with other Notch regulated cyclic genes. In the mouse its transcription is both Wnt‐ and Notch‐dependent, whereas in the chick and fish embryo it is simply Notch‐dependent. Despite oscillating mRNA levels, Nrarp protein does not oscillate in the PSM. Finally, neither gain nor loss of Nrarp function interferes with the normal expression of Notch‐related cyclic genes. Developmental Dynamics 238:3043–3055, 2009.