Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Matos is active.

Publication


Featured researches published by Miguel Matos.


Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management | 2012

Automatic elasticity in OpenStack

Leander Beernaert; Miguel Matos; Ricardo Manuel Pereira Vilaça; Rui Carlos Mendes de Oliveira

Cloud computing infrastructures are the most recent approach to the development and conception of computational systems. Cloud infrastructures are complex environments with various subsystems, each one with their own challenges. Cloud systems should be able to provide the following fundamental property: elasticity. Elasticity is the ability to automatically add and remove instances according to the needs of the system. This is a requirement for pay-per-use billing models. Various open source software solutions allow companies and institutions to build their own Cloud infrastructure. However, in most of these, the elasticity feature is quite immature. Monitoring and timely adapting the active resources of a Cloud computing infrastructure is key to provide the elasticity required by diverse, multi-tenant and pay-per-use business models. In this paper, we propose Elastack, an automated monitoring and adaptive system, generic enough to be applied to existing IaaS frameworks, and intended to enable the elasticity they currently lack. Our approach offers any Cloud infrastructure the mechanisms to implement automated monitoring and adaptation as well as the flexibility to go beyond these. We evaluate Elastack by integrating it with the OpenStack showing how easy it is to add these important features with a minimum, almost imperceptible, amount of modifications to the default installation.


OTM '09 Proceedings of the Confederated International Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet Systems: Part I | 2009

CLON: Overlay Networks and Gossip Protocols for Cloud Environments

Miguel Matos; António Sousa; José Pereira; Rui Carlos Mendes de Oliveira; Eric Deliot; Paul Murray

Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe. The goal of this work is therefore to improve the efficiency of gossip-based reliable multicast by reducing the load imposed on those constrained links. In detail, the proposed clon protocol combines an overlay that gives preference to local links and a dissemination strategy that takes into account locality. Extensive experimental evaluation using a very large number of simulated nodes shows that this results in a reduction of traffic in constrained links by an order of magnitude, while at the same time preserving the resilience properties that make gossip-based protocols so attractive.


IEEE Transactions on Parallel and Distributed Systems | 2013

Scaling Up Publish/Subscribe Overlays Using Interest Correlation for Link Sharing

Miguel Matos; Pascal Felber; Rui Carlos Mendes de Oliveira; José Pereira; Etienne Rivière

Topic-based publish/subscribe is at the core of many distributed systems, ranging from application integration middleware to news dissemination. Therefore, much research was dedicated to publish/subscribe architectures and protocols, and in particular to the design of overlay networks for decentralized topic-based routing and efficient message dissemination. Nonetheless, existing systems fail to take full advantage of shared interests when disseminating information, hence suffering from high maintenance and traffic costs, or construct overlays that cope poorly with the scale and dynamism of large networks. In this paper, we present StaN, a decentralized protocol that optimizes the properties of gossip-based overlay networks for topic-based publish/subscribe by sharing a large number of physical connections without disrupting its logical properties. StaN relies only on local knowledge and operates by leveraging common interests among participants to improve global resource usage and promote topic and event scalability. The experimental evaluation under two real workloads, both via a real deployment and through simulation, shows that StaN provides an attractive infrastructure for scalable topic-based publish/subscribe.


international parallel and distributed processing symposium | 2012

BRISA: Combining Efficiency and Reliability in Epidemic Data Dissemination

Miguel Matos; Valerio Schiavoni; Pascal Felber; Rui Carlos Mendes de Oliveira; Etienne Rivière

There is an increasing demand for efficient and robust systems able to cope with todays global needs for intensive data dissemination, e.g., media content or news feeds. Unfortunately, traditional approaches tend to focus on one end of the efficiency/robustness design spectrum, by either leveraging rigid structures such as trees to achieve efficient distribution, or using loosely-coupled epidemic protocols to obtain robustness. In this paper we present BRISA, a hybrid approach combining the robustness of epidemic-based dissemination with the efficiency of tree-based structured approaches. This is achieved by having dissemination structures such as trees implicitly emerge from an underlying epidemic substrate by a judicious selection of links. These links are chosen with local knowledge only and in such a way that the completeness of data dissemination is not compromised, i.e., the resulting structure covers all nodes. Failures are treated as an integral part of the system as the dissemination structures can be promptly compensated and repaired thanks to the underlying epidemic substrate. Besides presenting the protocol design, we conduct an extensive evaluation in a real environment, analyzing the effectiveness of the structure creation mechanism and its robustness under faults and churn. Results confirm BRISA as an efficient and robust approach to data dissemination in the large scale.


acm symposium on applied computing | 2008

Serpentine: adaptive middleware for complex heterogeneous distributed systems

Miguel Matos; Alfrânio Correia; José Pereira; Rui Carlos Mendes de Oliveira

Adaptation of system parameters is acknowledged as a requirement to scalable and dependable distributed systems. Unfortunately, adaptation cannot be effective when provided solely by individual system components as the correct decision is often tied to the composition itself and the system as a whole. In fact, proper adaption is a cross-cutting issue: Diagnostic and feedback operations must target multiple components and do it at different abstraction levels. We address this problem with the SERPENTINE middleware platform. By relying on the industry standard JMX as a service interface, it can monitor and operate on a wide range of distributed middleware and application components. By building on a JMX-enabled OSGi runtime, SERPENTINE is able to control the life-cycle of components themselves. The scriptable stateless server and cascading architecture allow for increased dependability and flexibility.


Proceedings of the 16th Annual Middleware Conference on | 2015

EpTO: An Epidemic Total Order Algorithm for Large-Scale Distributed Systems

Miguel Matos; Hugues Mercier; Pascal Felber; Rui Carlos Mendes de Oliveira; José Pereira

The ordering of events is a fundamental problem of distributed computing and has been extensively studied over several decades. From all the available orderings, total ordering is of particular interest as it provides a powerful abstraction for building reliable distributed applications. Unfortunately, deterministic total order algorithms scale poorly and are therefore unfit for modern large-scale applications. The main contribution of this paper is EpTO, a total order algorithm with probabilistic agreement that scales both in the number of processes and events. EpTO provides deterministic safety and probabilistic liveness: integrity, total order and validity are always preserved, while agreement is achieved with arbitrarily high probability. We show that EpTO is well-suited for large-scale dynamic distributed systems: it does not require a global clock nor synchronized processes, and it is highly robust even when the network suffers from large delays and significant churn and message loss.


symposium on reliable distributed systems | 2014

On the Support of Versioning in Distributed Key-Value Stores

Pascal Felber; Marcelo Pasin; Etienne Rivière; Valerio Schiavoni; Pierre Sutra; Fábio Coelho; Rui Pedro Soares de Oliveira; Miguel Matos; Ricardo Manuel Pereira Vilaça

The ability to access and query data stored in multiple versions is an important asset for many applications, such as Web graph analysis, collaborative editing platforms, data forensics, or correlation mining. The storage and retrieval of versioned data requires a specific API and support from the storage layer. The choice of the data structures used to maintain versioned data has a fundamental impact on the performance of insertions and queries. The appropriate data structure also depends on the nature of the versioned data and the nature of the access patterns. In this paper we study the design and implementation space for providing versioning support on top of a distributed key-value store (KVS). We define an API for versioned data access supporting multiple writers and show that a plain KVS does not offer the necessary synchronization power for implementing this API. We leverage the support for listeners at the KVS level and propose a general construction for implementing arbitrary types of data structures for storing and querying versioned data. We explore the design space of versioned data storage ranging from a flat data structure to a distributed sharded index. The resulting system, ALEPH, is implemented on top of an industrial-grade open-source KVS, Infinispan. Our evaluation, based on real-world Wikipedia access logs, studies the performance of each versioning mechanisms in terms of load balancing, latency and storage overhead in the context of different access scenarios.


international conference on peer to peer computing | 2014

A peer-to-peer service architecture for the Smart Grid

Filipe Campos; Miguel Matos; José Pereira; David Rua

Important challenges in interoperability, reliability, and scalability need to be addressed before the Smart Grid vision can be fulfilled. The sheer scale of the electric grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. Moreover, the need to provide full interoperability between diverse current and future energy and non-energy systems, along with seamless discovery and configuration of a large variety of networked devices, ranging from the resource constrained sensing devices to servers in data centers, requires an implementation-agnostic Service Oriented Architecture. In this position paper we propose that this challenge can be addressed with a generic framework that reconciles the reliability and scalability of Peer-to-Peer systems, with the industrial standard interoperability of Web Services. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios.


international conference on peer to peer computing | 2014

LAYSTREAM: Composing standard gossip protocols for live video streaming

Miguel Matos; Valerio Schiavoni; Etienne Rivière; Pascal Felber; Rui Pedro Soares de Oliveira

Gossip-based live streaming is a popular topic, as attested by the vast literature on the subject. Despite the particular merits of each proposal, all need to implement and deal with common challenges such as membership management, topology construction and video packets dissemination. Well-principled gossip-based protocols have been proposed in the literature for each of these aspects. Our goal is to assess the feasibility of building a live streaming system, LAYSTREAM, as a composition of these existing protocols, to deploy the resulting system on real testbeds, and report on lessons learned in the process. Unlike previous evaluations conducted by simulations and considering each protocol independently, we use real deployments. We evaluate protocols both independently and as a layered composition, and unearth specific problems and challenges associated with deployment and composition. We discuss and present solutions for these, such as a novel topology construction mechanism able to cope with the specificities of a large-scale and delay-sensitive environment, but also with requirements from the upper layer. Our implementation and data are openly available to support experimental reproducibility.


symposium on reliable distributed systems | 2014

DATAFLASKS: Epidemic Store for Massive Scale Systems

Francisco Maia; Miguel Matos; Ricardo Manuel Pereira Vilaça; José Pereira; Rui Carlos Mendes de Oliveira; Etienne Rivière

Very large scale distributed systems provide some of the most interesting research challenges while at the same time being increasingly required by nowadays applications. The escalation in the amount of connected devices and data being produced and exchanged, demands new data management systems. Although new data stores are continuously being proposed, they are not suitable for very large scale environments. The high levels of churn and constant dynamics found in very large scale systems demand robust, proactive and unstructured approaches to data management. In this paper we propose a novel data store solely based on epidemic (or gossip-based) protocols. It leverages the capacity of these protocols to provide data persistence guarantees even in highly dynamic, massive scale systems. We provide an open source prototype of the data store and correspondent evaluation.

Collaboration


Dive into the Miguel Matos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Felber

University of Neuchâtel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge