Miguel Mies
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Mies.
Brazilian Journal of Oceanography | 2012
Miguel Mies; Felipe Eduardo Lázaro Braga; Marcello Santos Scozzafave; Daniel Eduardo Lavanholi de Lemos; Paulo Y. G. Sumida
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 μm day-1, increasing after addition of symbionts to 18.0 μm day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Frontiers in Ecology and Evolution | 2017
Miguel Mies; Paulo Y. G. Sumida; Nils Rädecker; Christian R. Voolstra
Symbiodinium are dinoflagellate photosynthetic algae that associate with a diverse array of marine invertebrates, and these relationships are comprehensively documented for adult animal hosts. Conversely, comparatively little is known about the associations during larval development of animal hosts, although four different metazoan phyla (Porifera, Cnidaria, Acoelomorpha, and Mollusca) produce larvae associated with Symbiodinium. These phyla represent considerable diversities in larval forms, manner of symbiont acquisition, and requirements on the presence of symbionts for successful metamorphosis. Importantly, the different requirements are conveyed by specific symbiont types that are selected by the host animal larvae. Nevertheless, it remains to be determined whether these associations during larval stages already represent mutualistic interactions, as evident from the relationship of Symbiodinium with their adult animal hosts. For instance, molecular studies suggest that the host larval transcriptome is nearly unaltered after symbiont acquisition. Even so, a symbiosis-specific gene has been identified in Symbiodinium that is expressed in larval host stages, and similar genes are currently being described for host organisms. However, some reports suggest that the metabolic exchange between host larvae and Symbiodinium may not cover the energetic requirements of the host. Here, we review current studies to summarize what is known about the association between metazoan larvae and Symbiodinium. In particular, our aim was to gather in how far the mutualistic relationship present between adult animals hosts and Symbiodinium is already laid out at the time of symbiont acquisition by host larvae. We conclude that the mutualistic relationship between animal hosts and algal symbionts in many cases is not set up during larval development. Furthermore, symbiont identity may influence whether a mutualism can be established during host larval stages.
Reviews in Fisheries Science & Aquaculture | 2017
Miguel Mies; P. Dor; Arthur Ziggiatti Güth; Paulo Y. G. Sumida
ABSTRACT Giant clams are bivalves found across Indo-Pacific coral reefs and intensively harvested for both food and marine aquarium trade markets. Aquaculture protocols are well established, but there is very little data available on production and trade. This review compiled data from several international agencies and from each one of the 20 giant clam farms active in 13 countries in the Indo-Pacific. The findings show that the import/export data do not match, and that approximately 50% of internationally traded clams are aquacultured. Approximately 150,000 individuals were produced in 2015, mostly by private companies targeting the aquarium trade. Government hatcheries produced clams not only for the aquarium trade, but also for restocking and feeding local communities. However, production is still low and only three of the 20 farms collaborate with universities or research institutions and all of them reported production problems related to technical, commercial, infrastructure, and environmental issues. In order to fight such problems and optimize production, it is important that producers, universities, and government agencies throughout the world communicate with each other.
Royal Society Open Science | 2017
Miguel Mies; Christian R. Voolstra; C. B. Castro; D. O. Pires; E. N. Calderon; Paulo Y. G. Sumida
Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium–invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.
Coral Reefs | 2017
Miguel Mies; A. B. Chaves-Filho; S. Miyamoto; A. Z. Güth; A. A. Tenório; Clovis Barreira e Castro; Débora O. Pires; Emiliano Nicolas Calderon; Paulo Y. G. Sumida
Symbiodinium are dinoflagellates engaged in a mutualistic symbiosis with multiple coral reef taxa. They are divided in nine different clades (A–I), which typically associate with different hosts. However, very little information is available on metabolic differences in Symbiodinium types, especially when associated with metazoan larvae. We tested whether three ω3 fatty acids (stearidonic acid, SDA; docosapentaenoic acid, DPA; and docosahexaenoic acid, DHA) that are typically translocated from Symbiodinium to its host are produced by Symbiodinium types within clades A–F associated with Mussismilia hispida (scleractinian coral), Berghia stephanieae (nudibranch), and Tridacna crocea (giant clam) larvae. We acquired and spawned broodstock for each host, cultured their larvae, and offered Symbiodinium types belonging to clades A–F. Samples were taken during a 72-h window after the offer of Symbiodinium, and fatty acids were extracted and analyzed by gas chromatography. The concentrations of SDA and DPA for all host larvae–dinoflagellate associations were low and variable, without trends. However, M. hispida planula larvae associated with Symbiodinium A1 and C1 had a statistically significant higher amount of DHA. The veliger larvae of B. stephanieae digested the Symbiodinium, and the amount of DHA remained constant throughout the experiment. The veliger larvae of T. crocea associated with Symbiodinium A1 and C1 also presented a higher amount of DHA, although not statistically different from the other types. These results show that Symbiodinium A1 and C1, in the case of M. hispida and T. crocea (which usually harbor strains within clades A and C), may contribute a small amount of DHA to the larvae of these organisms and form a stronger mutualism than other strains.
Coral Reefs | 2018
Miguel Mies; A. Z. Güth; A. A. Tenório; T. N. S. Banha; L. G. Waters; P. S. Polito; S. Taniguchi; M. C. Bícego; Paulo Y. G. Sumida
Many species of reef-building corals are mixotrophic, relying on both photoautotrophy performed by their dinoflagellate symbionts and heterotrophy from consumption of zooplankton. Autotrophy and heterotrophy supply corals with specific ω3 fatty acids, which can be used as trophic markers and record the contribution of each feeding strategy. This study investigated whether the reef-building coral Mussismilia hispida, endemic to Brazil, is able to shift between predominantly autotrophic and predominantly heterotrophic by monitoring the concentration of fatty acids in the host tissue. We then examined whether shifts are related to changes in temperature and wind stress. For that purpose, M. hispida colonies were monitored for a year with monthly tissue sampling. Symbiont concentration was determined and lipid extraction performed. Four fatty acids were quantitatively analyzed by gas chromatography with flame ionization detector: the autotrophy markers: stearidonic acid (SDA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and a heterotrophy marker: cis-gondoic acid (CGA). Three preliminary experiments confirmed the specificity of SDA, DPA and CGA, but not of DHA. Shifts of predominance occurred multiple times during the year and were associated with minimal temperatures and wind stress. Colonies underwent mild bleaching during summer months, which they seemed to compensate with heterotrophic feeding. Our major findings include the validation of three FATM and a trophic index for coral reef ecology studies and also describing the in situ occurrences of shifts between feeding modes, while highlighting the role of temperature and meteorological events.
Brazilian Journal of Oceanography | 2015
Paulo Y. G. Sumida; Arthur Ziggiatti Güth; Miguel Mies
How deep-sea fauna evolved is a question still being investigated. One of the most accepted theories is that shallow water organisms migrated to deeper waters and gave origin to the deep-sea communities. However, many organisms are prevented from performing long vertical migrations by the increasing hydrostatic pressure. Tadpole larvae of the ascidian Polyandrocarpa zorritensis were submitted to pressure treatments of 1, 50, 100 and 200 atm. Survival, settlement and metamorphosis rates were verified after 24 hour incubation in a pressure chamber. The majority of larvae settled (84%, 62%, 83% and 77% respectively) and successfully underwent metamorphosis (93%, 59%, 85% and 60%) in all pressure treatments. Larval mortality was of less than 15% in all treatments, except for the 50 atm treatment, which presented 38% mortality. Nearly 100% of the surviving larvae underwent metamorphosis in the treatments of 1, 50 and 100 atm. However, 1/3 of the individuals were still in their larval stages in the 200 atm treatment and presented delayed development. These data suggest that ascidian larvae can withstand the hydrostatic pressure levels found in the deep-sea. It is therefore feasible that the current abyssal ascidian species may have colonized the deep-sea through vertical migration and in only a few generations.
Aquaculture Research | 2013
Miguel Mies; Felipe Eduardo Lázaro Braga; Marcello Santos Scozzafave; Paulo Y. G. Sumida; Daniel Lemos
The international journal of marine science | 2012
Miguel Mies; Paulo Y. G. Sumida
Symbiosis | 2017
Miguel Mies; M. A. Van Sluys; Cushla J. Metcalfe; Paulo Y. G. Sumida