Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Otero is active.

Publication


Featured researches published by Miguel Otero.


Current Opinion in Rheumatology | 2011

Inflammation in osteoarthritis.

Mary B. Goldring; Miguel Otero

Purpose of reviewThis review focuses on the novel stress-induced and proinflammatory mechanisms underlying the pathogenesis of osteoarthritis, with particular attention to the role of synovitis and the contributions of other joint tissues to cellular events that lead to the onset and progression of the disease and irreversible cartilage damage. Recent findingsStudies during the past 2 years have uncovered novel pathways that, when activated, cause the normally quiescent articular chondrocytes to become activated and undergo a phenotypic shift, leading to the disruption of homeostasis and ultimately to the aberrant expression of proinflammatory and catabolic genes. Studies in animal models and retrieved human tissues indicate that proinflammatory factors may be produced by the chondrocytes themselves or by the synovium and other surrounding tissues, even in the absence of overt inflammation, and that multiple pathways converge on the upregulation of aggrecanases and collagenases, especially MMP-13. Particular attention has been paid to the contribution of synovitis in posttraumatic joint injury, such as meniscal tears, and the protective role of the pericellular matrix in mediating chondrocyte responses through receptors, such as discoidin domain receptor-2 and syndecan-4. New findings about intracellular signals, including the transcription factors NF-&kgr;B, C/EBP&bgr;, ETS, Runx2, and hypoxia-inducible factor-2&agr;, and their modulation by inflammatory cytokines, chemokines, adipokines, Toll-like receptor ligands, and receptor for advanced glycation end-products, as well as CpG methylation and microRNAs, are reviewed. SummaryFurther work on mediators and pathways that are common across different models and occur in human osteoarthritis and that impact the osteoarthritis disease process at different stages of initiation and progression will inform us about new directions for targeted therapies.


FEBS Letters | 2005

Leptin, from fat to inflammation: old questions and new insights

Miguel Otero; Rocío Lago; Francisca Lago; Felipe F. Casanueva; Carlos Dieguez; Juan J. Gomez-Reino; Oreste Gualillo

Leptin is 16 kDa adipokine that links nutritional status with neuroendocrine and immune functions. Initially thought to be a satiety factor that regulates body weight by inhibiting food intake and stimulating energy expenditure, leptin is a pleiotropic hormone whose multiple effects include regulation of endocrine function, reproduction, and immunity. Leptin can be considered as a pro‐inflammatory cytokine that belongs to the family of long‐chain helical cytokines and has structural similarity with interleukin‐6, prolactin, growth hormone, IL‐12, IL‐15, granulocyte colony‐stimulating factor and oncostatin M. Because of its dual nature as a hormone and cytokine, leptin links the neuroendocrine and the immune system. The role of leptin in the modulation of immune response and inflammation has recently become increasingly evident. The increase in leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokine network which governs the inflammatory‐immune response and the host defense mechanisms. Leptin plays an important role in inflammatory processes involving T cells and has been reported to modulate T‐helper cells activity in the cellular immune response. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions, such as experimental autoimmune encephalomyelitis, type 1 diabetes, rheumatoid arthritis, and intestinal inflammation. Very recently, a key role for leptin in osteoarthritis has been demonstrated: leptin indeed exhibits, in concert with other pro‐inflammatory cytokines, a detrimental effect on articular cartilage by promoting nitric oxide synthesis in chondrocytes. Here, we review the recent advances regarding leptin biology with a special focus on those actions relevant to the role of leptin in the pathophysiology of inflammatory processes and immune responses.


Osteoarthritis and Cartilage | 2008

A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes.

Rocío Lago; Rodolfo Gómez; Miguel Otero; Francisca Lago; Rosalía Gallego; Carlos Dieguez; Juan J. Gomez-Reino; Oreste Gualillo

OBJECTIVE Recent studies revealed a close connection between adipose tissue, adipokines and articular degenerative inflammatory diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA). The goal of this work was to investigate the activity of adiponectin in human and murine chondrocytes and to study its functional role in the modulation of nitric oxide synthase type II (NOS2). For completeness, interleukin (IL)-6, IL-1beta, matrix metalloproteinase (MMP)-2, MMP-3, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, prostaglandin E2 (PGE2), leukotriene B4 (LTB4), tumor necrosis factor alpha (TNF)-alpha and monocyte chemoattractant protein-1 (MCP-1) accumulation have been evaluated in adiponectin-stimulated chondrocytes cell culture supernatants. METHODS Murine ATDC5 cell line, C28/I2, C20A4, TC28a2 human immortalized chondrocytes, and human cultured chondrocytes were used. Nitrite accumulation was determined by Griess reaction. Adiponectin receptors (AdipoRs) expression was evaluated by immunofluorescence microscopy and confirmed by reverse transcriptase-polymerase chain reaction. NOS2 expression was evaluated by Western blot analysis whereas cytokines, prostanoids and metalloproteinases production was evaluated by specific enzyme-linked immunosorbent assays. RESULTS Human and murine chondrocytes express functional AdipoRs. Adiponectin induces NOS2. This effect is inhibited by aminoguanidine, dexamethasone and by a selective inhibitor of phosphatidylinositol 3-kinase. In addition, adiponectin is able to increase IL-6, MMP-3, MMP-9 and MCP-1 by murine cultured chondrocytes whereas it was unable to modulate TNF-alpha, IL-1beta, MMP-2, TIMP-1, PGE2 and LTB4 release. CONCLUSIONS These results bind more closely the interactions between fat-derived adipokines and articular inflammatory diseases, and suggest that adiponectin is a novel key element in the maintenance of cartilage homeostasis which might be considered as a potential therapeutical target in joint degenerative diseases.


Arthritis Research & Therapy | 2005

Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1

Miguel Otero; Rocío Lago; Francisca Lago; Juan Gómez Reino; Oreste Gualillo

The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and in human primary chondrocytes. This study indicates that leptin plays a proinflammatory role, in synergy with IL-1, by inducing NOS type II through a signalling pathway that involves JAK2, PI3K, MEK-1 and p38 kinase.


Journal of Biological Chemistry | 2013

Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites.

Ko Hashimoto; Miguel Otero; Kei Imagawa; María C. de Andrés; Jonathan M. Coico; Helmtrud I. Roach; Richard O.C. Oreffo; Kenneth B. Marcu; Mary B. Goldring

Background: The role of DNA methylation in musculoskeletal diseases is poorly understood. Results: Methylation of specific CpG sites in the MMP13 and IL1B promoters correlates strongly with gene activity in human cartilage. Conclusion: Specific CpG site methylation inhibits MMP13 transactivation by HIF-2α. Significance: Our findings offer new insight on the impact of epigenetic control of a joint disease that can affect adults throughout life. The role of DNA methylation in the regulation of catabolic genes such as MMP13 and IL1B, which have sparse CpG islands, is poorly understood in the context of musculoskeletal diseases. We report that demethylation of specific CpG sites at −110 bp and −299 bp of the proximal MMP13 and IL1B promoters, respectively, detected by in situ methylation analysis of chondrocytes obtained directly from human cartilage, strongly correlated with higher levels of gene expression. The methylation status of these sites had a significant impact on promoter activities in chondrocytes, as revealed in transfection experiments with site-directed CpG mutants in a CpG-free luciferase reporter. Methylation of the −110 and −299 CpG sites, which reside within a hypoxia-inducible factor (HIF) consensus motif in the respective MMP13 and IL1B promoters, produced the most marked suppression of their transcriptional activities. Methylation of the −110 bp CpG site in the MMP13 promoter inhibited its HIF-2α-driven transactivation and decreased HIF-2α binding to the MMP13 proximal promoter in chromatin immunoprecipitation assays. In contrast to HIF-2α, MMP13 transcriptional regulation by other positive (RUNX2, AP-1, ELF3) and negative (Sp1, GATA1, and USF1) factors was not affected by methylation status. However, unlike the MMP13 promoter, IL1B was not susceptible to HIF-2α transactivation, indicating that the −299 CpG site in the IL1B promoter must interact with other transcription factors to modulate IL1B transcriptional activity. Taken together, our data reveal that the methylation of different CpG sites in the proximal promoters of the human MMP13 and IL1B genes modulates their transcription by distinct mechanisms.


Arthritis Research & Therapy | 2007

Cells of the synovium in rheumatoid arthritis. Chondrocytes

Miguel Otero; Mary B. Goldring

Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.


Journal of Biological Chemistry | 2012

E74-like Factor 3 (ELF3) Impacts on Matrix Metalloproteinase 13 (MMP13) Transcriptional Control in Articular Chondrocytes under Proinflammatory Stress

Miguel Otero; Darren A. Plumb; Kaneyuki Tsuchimochi; Cecilia L. Dragomir; Ko Hashimoto; Haibing Peng; E. Olivotto; Michael Bevilacqua; Lujian Tan; Zhiyong Yang; Yumei Zhan; Peter Oettgen; Yefu Li; Kenneth B. Marcu; Mary B. Goldring

Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position −78 bp and by cooperating with AP-1. In addition, ELF3 binding to the proximal MMP13 promoter is enhanced by IL-1β stimulation in chondrocytes, and the IL-1β-induced MMP13 expression is inhibited in primary human chondrocytes by siRNA-ELF3 knockdown and in chondrocytes from Elf3−/− mice. Further, we found that MEK/ERK signaling enhances ELF3-driven MMP13 transactivation and is required for IL-1β-induced ELF3 binding to the MMP13 promoter, as assessed by chromatin immunoprecipitation. Finally, we show that enhanced levels of ELF3 co-localize with MMP13 protein and activity in human osteoarthritic cartilage. These studies define a novel role for ELF3 as a procatabolic factor that may contribute to cartilage remodeling and degradation by regulating MMP13 gene transcription.


Human Molecular Genetics | 2010

A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E

Philipp G. Maass; Jutta Wirth; Atakan Aydin; Andreas Rump; Sigmar Stricker; Sigrid Tinschert; Miguel Otero; Kaneyuki Tsuchimochi; Mary B. Goldring; Friedrich C. Luft; Sylvia Bähring

Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.


Journal of Ethnopharmacology | 2011

Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages

Shengqian Q. Wu; Miguel Otero; Frank M. Unger; Mary B. Goldring; Ampai Phrutivorapongkul; Catharina Chiari; Alexander Kolb; Helmut Viernstein; Stefan Toegel

ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia sappan is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. In order to provide a scientific basis for the applicability of Caesalpinia sappan in arthritic diseases, the present study aimed to assess the effects of an ethanolic Caesalpinia sappan extract (CSE) on human chondrocytes and macrophages. MATERIALS AND METHODS Primary human chondrocytes were isolated from cartilage specimens of OA patients. Primary cells, SW1353 chondrocytes and THP-1 macrophages were serum-starved and pretreated with different concentrations of CSE prior to stimulation with 10 ng/ml of interleukin-1beta (IL-1β) or lipopolysaccharide (LPS). Following viability tests, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were evaluated by Griess assay and ELISA, respectively. Using validated real-time PCR assays, mRNA levels of IL-1β, TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified. SW1353 cells were cotransfected with a COX-2 luciferase reporter plasmid and nuclear factor-kappa-B (NF-κB) p50 and p65 expression vectors in the presence or absence of CSE. RESULTS CSE dose-dependently inhibited the expression of pro-inflammatory cytokines IL-1β and TNF-α in IL-1β-stimulated chondrocytes and LPS-stimulated THP-1 macrophages. CSE further suppressed the synthesis of NO in primary OA chondrocytes by blocking iNOS mRNA expression. The inhibition of COX-2 transcription was found to be related with the CSE inhibition of the p65/p50-driven transactivation of the COX-2 promoter. CONCLUSIONS The present report is first to demonstrate the anti-inflammatory activity of CSE in an in vitro cell model of joint inflammation. CSE can effectively abrogate the IL-1β-induced over-expression of inflammatory mediators at the transcriptional level in human chondrocytes and macrophages, most likely by inhibiting NF-κB (p65/p50) signaling. Blockade of IL-1β-induced NF-κB signaling and its downstream pro-inflammatory targets by CSE may be beneficial for reducing cartilage breakdown in arthritis.


Journal of Biological Chemistry | 2010

GADD45β Enhances Col10a1 Transcription via the MTK1/MKK3/6/p38 Axis and Activation of C/EBPβ-TAD4 in Terminally Differentiating Chondrocytes

Kaneyuki Tsuchimochi; Miguel Otero; Cecilia L. Dragomir; Darren A. Plumb; Luiz F. Zerbini; Towia A. Libermann; Kenneth B. Marcu; Setsuro Komiya; Kosei Ijiri; Mary B. Goldring

GADD45β (growth arrest- and DNA damage-inducible) interacts with upstream regulators of the JNK and p38 stress response kinases. Previously, we reported that the hypertrophic zone of the Gadd45β−/− mouse embryonic growth plate is compressed, and expression of type X collagen (Col10a1) and matrix metalloproteinase 13 (Mmp13) genes is decreased. Herein, we report that GADD45β enhances activity of the proximal Col10a1 promoter, which contains evolutionarily conserved AP-1, cAMP-response element, and C/EBP half-sites, in synergism with C/EBP family members, whereas the MMP13 promoter responds to GADD45β together with AP-1, ATF, or C/EBP family members. C/EBPβ expression also predominantly co-localizes with GADD45β in the embryonic growth plate. Moreover, GADD45β enhances C/EBPβ activation via MTK1, MKK3, and MKK6, and dominant-negative p38αapf, but not JNKapf, disrupts the combined trans-activating effect of GADD45β and C/EBPβ on the Col10a1 promoter. Importantly, GADD45β knockdown prevents p38 phosphorylation while decreasing Col10a1 mRNA levels but does not affect C/EBPβ binding to the Col10a1 promoter in vivo, indicating that GADD45β influences the transactivation function of DNA-bound C/EBPβ. In support of this conclusion, we show that the evolutionarily conserved TAD4 domain of C/EBPβ is the target of the GADD45β-dependent signaling. Collectively, we have uncovered a novel molecular mechanism linking GADD45β via the MTK1/MKK3/6/p38 axis to C/EBPβ-TAD4 activation of Col10a1 transcription in terminally differentiating chondrocytes.

Collaboration


Dive into the Miguel Otero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia L. Dragomir

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren A. Plumb

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Juan J. Gomez-Reino

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Kaneyuki Tsuchimochi

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge