Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel P. Eckstein is active.

Publication


Featured researches published by Miguel P. Eckstein.


Vision Research | 2000

Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement.

Marisa Carrasco; Cigdem Penpeci-Talgar; Miguel P. Eckstein

This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.


Attention Perception & Psychophysics | 2000

A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays

Miguel P. Eckstein; James P. Thomas; John Palmer; Steven S. Shimozaki

Recently, quantitative models based on signal detection theory have been successfully applied to the prediction of human accuracy in visual search for a target that differs from distractors along a single attribute (feature search). The present paper extends these models for visual search accuracy to multidimensional search displays in which the target differs from the distractors along more than one feature dimension (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in the display elicits a noisy representation for each of the relevant feature dimensions. The observer combines the representations across feature dimensions to obtain a single decision variable, and the stimulus with the maximum value determines the response. The model accurately predicts human experimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation. The model accounts for performance degradation without resorting to a limited-capacity spatially localized and temporally serial mechanism by which to bind information across feature dimensions.


Psychological Science | 1998

The Lower Visual Search Efficiency for Conjunctions Is Due to Noise and not Serial Attentional Processing

Miguel P. Eckstein

Models of human visual processing start with an initial stage with parallel independent processing of different physical attributes or features (e.g., color, orientation, motion). A second stage in these models is a temporally serial mechanism (visual attention) that combines or binds information across feature dimensions. Evidence for this serial mechanism is based on experimental results for visual search. I conducted a study of visual search accuracy that carefully controlled for low-level effects: physical similarity of target and distractor, element eccentricity, and eye movements. The larger set-size effects in visual search accuracy for briefly flashed conjunction displays, compared with feature displays, are quantitatively predicted by a simple model in which each feature dimension is processed independently with inherent neural noise and information is combined linearly across feature dimensions. The data are not predicted by a temporally serial mechanism or by a hybrid model with temporally serial and noisy processing. The results do not support the idea that a temporally serial mechanism, visual attention, binds information across feature dimensions and show that the conjunction-feature dichotomy is due to the noisy independent processing of features in the human visual system.


Journal of Vision | 2011

Visual search: a retrospective.

Miguel P. Eckstein

Visual search, a vital task for humans and animals, has also become a common and important tool for studying many topics central to active vision and cognition ranging from spatial vision, attention, and oculomotor control to memory, decision making, and rewards. While visual search often seems effortless to humans, trying to recreate human visual search abilities in machines has represented an incredible challenge for computer scientists and engineers. What are the brain computations that ensure successful search? This review article draws on efforts from various subfields and discusses the mechanisms and strategies the brain uses to optimize visual search: the psychophysical evidence, their neural correlates, and if unknown, possible loci of the neural computations. Mechanisms and strategies include use of knowledge about the target, distractor, background statistical properties, location probabilities, contextual cues, scene context, rewards, target prevalence, and also the role of saliency, center-surround organization of search templates, and eye movement plans. I provide overviews of classic and contemporary theories of covert attention and eye movements during search explaining their differences and similarities. To allow the reader to anchor some of the laboratory findings to real-world tasks, the article includes interviews with three expert searchers: a radiologist, a fisherman, and a satellite image analyst.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Looking just below the eyes is optimal across face recognition tasks

Matthew F. Peterson; Miguel P. Eckstein

When viewing a human face, people often look toward the eyes. Maintaining good eye contact carries significant social value and allows for the extraction of information about gaze direction. When identifying faces, humans also look toward the eyes, but it is unclear whether this behavior is solely a byproduct of the socially important eye movement behavior or whether it has functional importance in basic perceptual tasks. Here, we propose that gaze behavior while determining a person’s identity, emotional state, or gender can be explained as an adaptive brain strategy to learn eye movement plans that optimize performance in these evolutionarily important perceptual tasks. We show that humans move their eyes to locations that maximize perceptual performance determining the identity, gender, and emotional state of a face. These optimal fixation points, which differ moderately across tasks, are predicted correctly by a Bayesian ideal observer that integrates information optimally across the face but is constrained by the decrease in resolution and sensitivity from the fovea toward the visual periphery (foveated ideal observer). Neither a model that disregards the foveated nature of the visual system and makes fixations on the local region with maximal information, nor a model that makes center-of-gravity fixations correctly predict human eye movements. Extension of the foveated ideal observer framework to a large database of real-world faces shows that the optimality of these strategies generalizes across the population. These results suggest that the human visual system optimizes face recognition performance through guidance of eye movements not only toward but, more precisely, just below the eyes.


Journal of Vision | 2002

Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments

Craig K. Abbey; Miguel P. Eckstein

We consider estimation and statistical hypothesis testing on classification images obtained from the two-alternative forced-choice experimental paradigm. We begin with a probabilistic model of task performance for simple forced-choice detection and discrimination tasks. Particular attention is paid to general linear filter models because these models lead to a direct interpretation of the classification image as an estimate of the filter weights. We then describe an estimation procedure for obtaining classification images from observer data. A number of statistical tests are presented for testing various hypotheses from classification images based on some more compact set of features derived from them. As an example of how the methods we describe can be used, we present a case study investigating detection of a Gaussian bump profile.


Journal of The Optical Society of America A-optics Image Science and Vision | 1997

Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

Miguel P. Eckstein; Albert J. Ahumada; Andrew B. Watson

Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.


Journal of The Optical Society of America A-optics Image Science and Vision | 2003

Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination.

Brent R. Beutter; Miguel P. Eckstein; Leland S. Stone

Humans use saccadic eye movements when they search for visual targets. We investigated the relationship between the visual processing used by saccades and perception during search by comparing saccadic and perceptual decisions under conditions in which each had access to equal visual information. We measured the accuracy of perceptual judgments and of the first search saccade over a wide range of target saliences [signal-to-noise ratios (SNRs)] in both a contrast-detection and a contrast-discrimination task. We found that saccadic and perceptual performances (1) were similar across SNRs, (2) showed similar task-dependent differences, and (3) were well described by a model based on signal detection theory that explicitly includes observer uncertainty [M. P. Eckstein et al., J. Opt. Soc. Am. A 14, 2406 (1997)1]. Our results demonstrate that the accuracy of the first saccade provides much information about the observers perceptual state at the time of the saccadic decision and provide evidence that saccades and perception use similar visual processing mechanisms for contrast detection and discrimination.


Spatial Vision | 2004

Signal detection theory applied to three visual search tasks — identification, yes/no detection and localization

E. Leslie Cameron; Joanna C. Tai; Miguel P. Eckstein; Marisa Carrasco

Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.


Vision Research | 2009

Statistical decision theory to relate neurons to behavior in the study of covert visual attention.

Miguel P. Eckstein; Matthew F. Peterson; Binh T. Pham; Jason A. Droll

Scrutiny of the numerous physiology and imaging studies of visual attention reveal that integration of results from neuroscience with the classic theories of visual attention based on behavioral work is not simple. The different subfields have pursued different questions, used distinct experimental paradigms and developed diverse models. The purpose of this review is to use statistical decision theory and computational modeling to relate classic theories of attention in psychological research to neural observables such as mean firing rate or functional imaging BOLD response, tuning functions, Fano factor, neuronal index of detectability and area under the receiver operating characteristic (ROC). We focus on cueing experiments and attempt to distinguish two major leading theories in the study of attention: limited resources model/increased sensitivity vs. selection/differential weighting. We use Bayesian ideal observer (BIO) modeling, in which predictive cues or prior knowledge change the differential weighting (prior) of sensory information to generate predictions of behavioral and neural observables based on Gaussian response variables and Poisson process neural based models. The ideal observer model can be modified to represent a number of classic psychological theories of visual attention by including hypothesized human attentional limited resources in the same way sequential ideal observer analysis has been used to include physiological processing components of human spatial vision (Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrimination. Psychological Review 96, 267-314.). In particular we compare new biologically plausible implementations of the BIO and variant models with limited resources. We find a close relationship between the behavioral effects of cues predicted by the models developed in the field of human psychophysics and their neuron-based analogs. Critically, we show that cue effects on experimental observables such as mean neural activity, variance, Fano factor and neuronal index of detectability can be consistent with the two major theoretical models of attention depending on whether the neuron is assumed to be computing likelihoods, log-likelihoods or a simple model operating directly on the Poisson variable. Change in neuronal tuning functions can also be consistent with both theories depending on whether the change in tuning is along the dimension being experimentally cued or a different dimension. We show that a neurons sensitivity appropriately measured using the area under the Receive Operating Characteristic curve can be used to distinguish across both theories and is robust to the many transformations of the decision variable. We provide a summary table with the hope that it might provide some guidance in interpreting past results as well as planning future studies.

Collaboration


Dive into the Miguel P. Eckstein's collaboration.

Top Co-Authors

Avatar

Craig K. Abbey

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binh T. Pham

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James S. Whiting

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yani Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge