Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Pericacho is active.

Publication


Featured researches published by Miguel Pericacho.


Journal of Cell Science | 2008

L- and S-endoglin differentially modulate TGFβ1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts

Soraya Velasco; Patricia Alvarez-Muñoz; Miguel Pericacho; Peter ten Dijke; Carmelo Bernabeu; José M. López-Novoa; Alicia Rodríguez-Barbero

TGFβ regulates cellular processes by binding to type I and type II TGFβ receptors (TβRI and TβRII, respectively). In addition to these signaling receptors, endoglin is an accessory TGFβ receptor that regulates TGFβ signaling. Although there are two different alternatively spliced isoforms of endoglin, L-endoglin (L, long) and S-endoglin (S, short), little is known about the effects of S-endoglin isoform on TGFβ signaling. Here, we have analyzed the TGFβ1 signaling pathways and the effects of L- and S-endoglin in endoglin-deficient L6E9 cells. We found that TGFβ activates two distinct TβRI-Smad signaling pathways: ALK1-Smad1-Id1 and ALK5-Smad2-PAI1, in these cells. Interestingly, L-endoglin enhanced the ALK1-Id1 pathway, while S-endoglin promoted the ALK5-PAI1 route. These effects on signaling are supported by biological effects on TGFβ1-induced collagen I expression and inhibition of cell proliferation. Thus, while L-endoglin decreased TGFβ1-induced collagen I and CTGF expression and increased TGFβ1-induced proliferation, S-endoglin strongly increased TGFβ1-induced collagen I and CTGF expression, and reduced TGFβ1-induced cell proliferation.


Circulation Research | 2006

Endoglin Regulates Cyclooxygenase-2 Expression and Activity

Mirjana Jerkic; Juan V. Rivas-Elena; Juan Francisco Santibáñez; Marta Prieto; Alicia Rodríguez-Barbero; Fernando Pérez-Barriocanal; Miguel Pericacho; Miguel Arévalo; Calvin P.H. Vary; Michelle Letarte; Carmelo Bernabeu; José M. López-Novoa

The endoglin heterozygous (Eng+/−) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng+/− mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E2 were observed in the Eng+/− mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng+/− but not in Eng+/+ mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N&ohgr;-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng+/+ mice. N&ohgr;-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-β1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng+/− mice.


Journal of Cellular and Molecular Medicine | 2008

Identification of serum endoglin as a novel prognostic marker after acute myocardial infarction.

Ignacio Cruz-Gonzalez; Pedro Pabón; Alicia Rodríguez-Barbero; Javier Martín-Moreiras; Miguel Pericacho; Pedro L. Sánchez; Víctor Ramírez; Maria Sanchez-Ledesma; Francisco Martín-Herrero; Javier Jiménez-Candil; Andrew O. Maree; Angel Sánchez-Rodríguez; Cándido Martín-Luengo; José M. López-Novoa

Endoglin is a proliferation‐associated and hypoxia‐inducible protein expressed in endothelial cells. The levels of soluble circulating endoglin and their prognostic significance in patients with acute myocardial infarction (AMI) are not known. In this observational prospective study serum endoglin levels were measured by ELISA in 183 AMI patients upon admission to hospital and 48 hrs later and in 72 healthy controls. Endoglin levels in AMI patients on admission were significantly lower than in healthy controls (4.25 ± 0.99 ng/ml versus 4.59 ± 0.87 ng/ml; P= 0.013), and decreased further in the first 48 hours (3.65 ± 0.76 ng/ml, P < 0.001). Upon follow‐up (median 319 days), patients who died had a significantly greater decrease in serum endoglin level over the first 48 hrs than those who survived (1.03 ± 0.91 versus 0.54 ± 0.55 ng/ml; P= 0.025). Endoglin decrease was an independent predictor of short‐term (30 days) (hazard ratio 2.33;95% CI = 1.27–4.23; P= 0.006) cardiovascular mortality, and also predicts overall cardiovascular mortality during the follow‐up (median 319 days) in AMI patients (hazard ratio 2.13;95% CI = 1.20–3.78; P= 0.01). In conclusion, early changes in serum endoglin may predict mortality after AMI.


Nephrology Dialysis Transplantation | 2008

The mitogen-activated protein kinase Erk5 mediates human mesangial cell activation

Fernando Dorado; Soraya Velasco; Azucena Esparís-Ogando; Miguel Pericacho; Atanasio Pandiella; Juan Silva; José M. López-Novoa; Alicia Rodríguez-Barbero

BACKGROUND Mesangial activation occurs in many forms of renal disease that progress to renal failure. Mitogen-activated protein kinases (MAPKs) are important mediators involved in the intracellular network of interacting proteins that transduce extracellular stimuli to intracellular responses. The extracellular signal-regulated kinases 5 (Erk5) MAPK pathway has been involved in regulating several cellular responses. Thus, we examined the expression of Erk5 in human renal tissue and the function of Erk5 in cultured human mesangial cells. METHODS Erk5 was visualized in human renal tissue by immunohistochemistry and in mesangial cells by immunofluorescence microscopy using the anti-Erk5 C-terminus antibody. Erk5 expression and activation, and collagen I expression were determined by western blot. To generate a dominant-negative form of the Erk5 in human mesangial cells, an EcoRI fragment from wild-type pCEFL-HA-Erk5 was subcloned into the EcoRI site of pCDNA3. Cell proliferation was analysed by an MTT-based assay. Cell contraction was analysed by studying the changes in the planar cell surface area. RESULTS Erk5 was expressed in the kidney, mainly localized at the glomerular mesangium. In cultured human mesangial cells, Erk5 was activated by foetal calf serum (FCS), high glucose, endothelin-1, platelet-activating factor (PAF), epidermal growth factor (EGF) and transforming growth factor beta-1 (TGF-beta1). The expression of a dominant-negative form of Erk5 in human mesangial cells resulted in a significant decrease in proliferation, EGF-induced cell contraction and TGF-beta1-induced collagen I expression. CONCLUSIONS These results suggest that Erk5 is involved in agonist-induced mesangial cell contraction, proliferation and ECM accumulation and point to a multifunctional role of Erk5 in the pathophysiology of glomerular mesangial cells.


Cellular and Molecular Life Sciences | 2016

Endoglin regulates mural cell adhesion in the circulatory system

Elisa Rossi; David M. Smadja; Elisa Boscolo; Carmen Langa; Miguel Arévalo; Miguel Pericacho; Luis Gamella-Pozuelo; Alexandre Kauskot; Luisa María Botella; Pascale Gaussem; Joyce Bischoff; José M. López-Novoa; Carmelo Bernabeu

The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng+/− mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.


Angiogenesis | 2017

The role of endoglin in post-ischemic revascularization

Elena Núñez-Gómez; Miguel Pericacho; Claudia Ollauri-Ibáñez; Carmelo Bernabeu; José M. López-Novoa

Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.


PLOS ONE | 2013

Endoglin haploinsufficiency promotes fibroblast accumulation during wound healing through Akt activation.

Miguel Pericacho; Soraya Velasco; Marta Prieto; Elena Llano; José M. López-Novoa; Alicia Rodríguez-Barbero

Accurate regulation of dermal fibroblast function plays a crucial role in wound healing. Many fibrotic diseases are characterized by a failure to conclude normal tissue repair and the persistence of fibroblasts inside lesions. In the present study we demonstrate that endoglin haploinsufficiency promotes fibroblast accumulation during wound healing. Moreover, scars from endoglin-heterozygous (Eng+/−) mice show persisting fibroblasts 12 days after wounding, which could lead to a fibrotic scar. Endoglin haploinsufficiency results in increased proliferation and migration of primary cultured murine dermal fibroblasts (MDFs). Moreover, Eng+/− MDF have diminished responses to apoptotic signals compared with control cells. Altogether, these modifications could explain the augmented presence of fibroblasts in Eng+/− mice wounds. We demonstrate that endoglin expression regulates Akt phosphorylation and that PI3K inhibition abolishes the differences in proliferation between endoglin haploinsufficient and control cells. Finally, persistent fibroblasts in Eng+/− mice wound co-localize with a greater degree of Akt phosphorylation. Thus, endoglin haploinsufficiency seems to promote fibroblast accumulation during wound healing through the activation of the PI3K/Akt pathway. These studies open new non-Smad signaling pathway for endoglin regulating fibroblast cell function during wound healing, as new therapeutic opportunities for the treatment of fibrotic wounds.


Molecular and Cellular Biology | 2015

Immunosuppression-Independent Role of Regulatory T Cells against Hypertension-Driven Renal Dysfunctions.

Salvatore Fabbiano; Mauricio Menacho-Márquez; Javier Robles-Valero; Miguel Pericacho; Adela Matesanz-Marín; Carmen García-Macías; Mª Ángeles Sevilla; María J. Montero; Balbino Alarcón; José M. López-Novoa; Pilar Martín; Xosé R. Bustelo

ABSTRACT Hypertension-associated cardiorenal diseases represent one of the heaviest burdens for current health systems. In addition to hemodynamic damage, recent results have revealed that hematopoietic cells contribute to the development of these diseases by generating proinflammatory and profibrotic environments in the heart and kidney. However, the cell subtypes involved remain poorly characterized. Here we report that CD39+ regulatory T (TREG) cells utilize an immunosuppression-independent mechanism to counteract renal and possibly cardiac damage during angiotensin II (AngII)-dependent hypertension. This mechanism relies on the direct apoptosis of tissue-resident neutrophils by the ecto-ATP diphosphohydrolase activity of CD39. In agreement with this, experimental and genetic alterations in TREG/TH cell ratios have a direct impact on tissue-resident neutrophil numbers, cardiomyocyte hypertrophy, cardiorenal fibrosis, and, to a lesser extent, arterial pressure elevation during AngII-driven hypertension. These results indicate that TREG cells constitute a first protective barrier against hypertension-driven tissue fibrosis and, in addition, suggest new therapeutic avenues to prevent hypertension-linked cardiorenal diseases.


PLOS ONE | 2014

L-Endoglin Overexpression Increases Renal Fibrosis after Unilateral Ureteral Obstruction

Barbara Oujo; José M. Muñoz-Félix; Miguel Arévalo; Elena Núñez-Gómez; Lucía Pérez-Roque; Miguel Pericacho; María González-Núñez; Carmen Langa; Carlos Martínez-Salgado; Fernando Pérez-Barriocanal; Carmelo Bernabeu; José M. López-Novoa

Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development.


Expert Opinion on Biological Therapy | 2017

Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies

Claudia Ollauri-Ibáñez; José M. López-Novoa; Miguel Pericacho

ABSTRACT Introduction: Alterations in the process of angiogenesis, either by excess or by defect, are present in different common pathologies. For this reason, great efforts are being made toward the development of pro- and anti-angiogenic therapies. Since endoglin levels are enhanced in tissues undergoing angiogenesis, and changes in its expression lead to alterations in vessel formation, endoglin has become an ideal target for these types of therapies. Areas covered: In this review, the role of endoglin in angiogenesis is summarized. In addition, the authors review pro- and anti-angiogenic therapies that are currently being used and new approaches that target endoglin. The article includes therapies that are both in preclinical and clinical development. Expert opinion: Endoglin is a very good target for anti-angiogenic therapy, as demonstrated by the positive results obtained with anti-endoglin antibodies. However, although endoglin in pro-angiogenic therapies has been successful in vitro, its use has not yet reached clinical settings. Moreover, the authors believe that establishing the exact role of endoglin in angiogenesis is essential and that this should be the next step in this field in the coming years.

Collaboration


Dive into the Miguel Pericacho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Bernabeu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Langa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbora Vitverova

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge