Miguel Redondo-Nieto
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Redondo-Nieto.
Molecular Plant-microbe Interactions | 2007
Benoît Alunni; Zoltán Kevei; Miguel Redondo-Nieto; Adam Kondorosi; Peter Mergaert; Eva Kondorosi
Deciphering the mechanisms leading to symbiotic nitrogen-fixing root nodule organogenesis in legumes resulted in the identification of numerous nodule-specific genes and gene families. Among them, NCR and GRP genes encode short secreted peptides with potential antimicrobial activity. These genes appear to form large multigenic families in Medicago truncatula and other closely related legume species, whereas no similar genes were found in databases of Lotus japonicus and Glycine max. We analyzed the genomic organization of these genes as well as their evolutionary dynamics in the M. truncatula genome. A total of 108 NCR and 23 GRP genes have been mapped that were often clustered in the genome. These included 29 new NCR and 17 new GRP genes. Reverse transcription-polymerase chain reaction analyses of the novel genes confirmed their exclusive nodule-specific expression similar to the previously identified members. Protein alignments and phylogenetic analyses revealed traces of several duplication events in the history of GRP and NCR genes. Moreover, microsyntenic evidences between M. truncatula and L. japonicus validated the hypothesis that these genes are specific for the inverted repeat-lacking clade of hologalegoid legumes, which allowed dating the appearance of these two gene families during the evolution of legume plants.
Journal of Bacteriology | 2012
Miguel Redondo-Nieto; Matthieu Barret; John P. Morrisey; Kieran J. Germaine; Francisco Martínez-Granero; Emma Barahona; Ana Navazo; María Sánchez-Contreras; Jennifer A. Moynihan; Stephen R. Giddens; Eric R. Coppoolse; Candela Muriel; Willem J. Stiekema; Paul B. Rainey; David N. Dowling; Fergal O'Gara; Marta Martín; Rafael Rivilla
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms.
PLOS ONE | 2016
Daniel Garrido-Sanz; Jan P. Meier-Kolthoff; Markus Göker; Marta Martín; Rafael Rivilla; Miguel Redondo-Nieto
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.
BMC Genomics | 2013
Miguel Redondo-Nieto; Matthieu Barret; John P. Morrissey; Kieran J. Germaine; Francisco Martínez-Granero; Emma Barahona; Ana Navazo; María Sánchez-Contreras; Jennifer A. Moynihan; Candela Muriel; David N. Dowling; Fergal O’Gara; Marta Martín; Rafael Rivilla
BackgroundPseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported.ResultsComparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins.ConclusionsThe genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
PLOS ONE | 2012
Francisco Martínez-Granero; Ana Navazo; Emma Barahona; Miguel Redondo-Nieto; Rafael Rivilla; Marta Martín
Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for the Gac system in the downregulation of flagella biosynthesis during exponential growth.
Molecular Plant-microbe Interactions | 2001
Luis Bolaños; Arancha Cebrián; Miguel Redondo-Nieto; Rafael Rivilla; Ildefonso Bonilla
Symbiosome development was studied in pea root nodules from plants growing in the absence of boron (B). Rhizobia released into the host cells of nodules from B-deficient plants developed to abnormal endophytic forms with an altered electrophoretic lipopolysaccharide pattern. Immunostaining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting of nodule homogenates with antibodies that recognize glycoprotein components showed that two previously described lectin-like glycoproteins (PsNLEC-1A and PsNLEC-1B) did not harbor the carbohydrate epitope normally recognized by specific monoclonal antibodies. Material derived from B-deficient nodules, however, still contained three antigenic isoforms with similar electrophoretic mobilities to PsNLEC-1 isoforms A, B, and C. These could be detected following immunoblotting and immunostaining with a specific antiserum originating from the purified PsNLEC protein that had been heterologously expressed in Escherichia coli. Immunogold localization of PsNLEC-1 sugar epitopes in B-deficient nodules showed that they were associated mostly with cytoplasmic vesicles rather than normal localization in the symbiosome compartment of mature infected cells. These results suggest that a modification of the glycosyl-moieties of PsNLEC-1 and an alteration of vesicle targeting occur during the development of pea nodules in the absence of B, and that these changes are associated with the development of aberrant nonfunctional symbiosomes.
Plant Physiology | 2005
Eva Kondorosi; Miguel Redondo-Nieto; Adam Kondorosi
The cell cycle plays a crucial role in plant development. Organogenesis takes place throughout the lifetime and most cells maintain their ability to reenter and to regulate the cell cycle in response to a wide range of endogenous and external signals. In planta, phytohormones, particularly auxin and
Microbial Biotechnology | 2009
Ana Navazo; Emma Barahona; Miguel Redondo-Nieto; Francisco Martínez-Granero; Rafael Rivilla; Marta Martín
Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere‐colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild‐type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two‐component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di‐GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild‐type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS‐ and sadB‐ backgrounds than in the wild‐type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild‐type strain and the wspR‐ mutant.
Plant and Soil | 2003
Abdelaziz El-Hamdaoui; Miguel Redondo-Nieto; B. Torralba; Rafael Rivilla; Ildefonso Bonilla; Luis Bolaños
The effects of different levels of B (from 9.3 to 93 μM B) and Ca (from 0.68 to 5.44 mM Ca) on plant development, nitrogen fixation, and mineral composition of pea (Pisum sativum L. cv. Argona) grown in symbiosis with Rhizobium leguminosarum bv. viciae 3841 and under salt stress, were analysed. The addition of extra B and extra Ca to the nutrient solution prevented the reduction caused by 75 mM NaCl of plant growth and the inhibition of nodulation and nitrogen fixation. The number of nodules recovered by the increase of Ca concentration at any B level, but only nodules developed at high B and high Ca concentrations could fix nitrogen. Addition of extra B and Ca during plant growth restored nodule organogenesis and structure, which was absolutely damaged by high salt. The increase in salt tolerance of symbiotic plants mediated by B and Ca can be co-related with the recovery of the contents of some nutrients. Salinity produced a decrease of B and Ca contents both in shoots and in nodulated roots, being increased by the supplement of both elements in the nutrient solution. Salinity also reduced the content in plants of other nutrients important for plant development and particularly for symbiotic nitrogen fixation, as K and Fe. A balanced nutrition of B and Ca (55.8 μM B, 2.72 mM Ca) was able to counter-act the deficiency of these nutrients in salt-stressed plants, leading to a huge increase in salinity tolerance of symbiotic pea plants. The necessity of nutritional studies to successfully cultivate legumes in saline soils is discussed and proposed.
Molecular Plant-microbe Interactions | 2004
Luis Bolaños; Miguel Redondo-Nieto; Rafael Rivilla; Nicholas J. Brewin; Ildefonso Bonilla
Samples of Rhizobium bacteroids isolated from pea nodule symbiosomes reacted positively with a monoclonal antibody recognizing N-linked glycan epitopes on plant glycoproteins associated with the peribacteroid membrane and peribacteroid fluid. An antiserum recognizing the symbiosomal lectin-like glycoprotein PsNLEC-1 also reacted positively. Samples of isolated bacteroids also reacted with an antibody recognizing a glycolipid component of the peribacteroid membrane and plasma membrane. Bacterial cells derived from free-living cultures then were immobilized on nitrocellulose sheets and tested for their ability to associate with components of plant extracts derived from nodule fractionation. A positive antibody-staining reaction indicated that both PsNLEC-1 and membrane glycolipid had become associated with the bacterial surface. A range of rhizobial strains with mutants affecting cell surface polysaccharides all showed similar interactions with PsNLEC-1 and associated plant membranes, with the exception of strain B659 (a deep-rough lipopolysaccharide mutant of Rhizobium leguminosarum). However, the presence of a capsule of extracellular polysaccharide apparently prevented interactions between rhizobial cells and these plant components. The importance of a close association between peribacteroid membranes, PsNLEC-1, and the bacterial surface is discussed in the context of symbiosome development.