Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Verbitsky is active.

Publication


Featured researches published by Miguel Verbitsky.


Neuron | 2003

Inducible Enhancement of Memory Storage and Synaptic Plasticity in Transgenic Mice Expressing an Inhibitor of ATF4 (CREB-2) and C/EBP Proteins

Amy Chen; Isabel A. Muzzio; Gaël Malleret; Dusan Bartsch; Miguel Verbitsky; Paul Pavlidis; Amanda L. Yonan; Svetlana Vronskaya; Michael Grody; Ivan L. Cepeda; T. Conrad Gilliam; Eric R. Kandel

To examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP. These results suggest that several proteins within the C/EBP family including ATF4 (CREB-2) act to constrain long-term synaptic changes and memory formation. Relief of this inhibition lowers the threshold for hippocampal-dependent long-term synaptic potentiation and memory storage in mice.


Neurology | 2012

Cognitive performance of GBA mutation carriers with early-onset PD The CORE-PD study

Roy N. Alcalay; E. Caccappolo; Helen Mejia-Santana; Ming-Xin Tang; Llency Rosado; M. Orbe Reilly; Diana Ruiz; Barbara M. Ross; Miguel Verbitsky; Sergey Kisselev; Elan D. Louis; Cynthia L. Comella; Amy Colcher; D. Jennings; Martha Nance; Susan B. Bressman; William K. Scott; Tanner Cm; Susan F. Mickel; Howard Andrews; Cheryl Waters; Stanley Fahn; L. Cote; Steven J. Frucht; Blair Ford; Michael Rezak; Kevin E. Novak; Joseph H. Friedman; Ronald F. Pfeiffer; Laura Marsh

Objective: To assess the cognitive phenotype of glucocerebrosidase (GBA) mutation carriers with early-onset Parkinson disease (PD). Methods: We administered a neuropsychological battery and the University of Pennsylvania Smell Identification Test (UPSIT) to participants in the CORE-PD study who were tested for mutations in PARKIN, LRRK2, and GBA. Participants included 33 GBA mutation carriers and 60 noncarriers of any genetic mutation. Primary analyses were performed on 26 GBA heterozygous mutation carriers without additional mutations and 39 age- and PD duration–matched noncarriers. Five cognitive domains, psychomotor speed, attention, memory, visuospatial function, and executive function, were created from transformed z scores of individual neuropsychological tests. Clinical diagnoses (normal, mild cognitive impairment [MCI], dementia) were assigned blind to genotype based on neuropsychological performance and functional impairment as assessed by the Clinical Dementia Rating (CDR) score. The association between GBA mutation status and neuropsychological performance, CDR, and clinical diagnoses was assessed. Results: Demographics, UPSIT, and Unified Parkinsons Disease Rating Scale–III performance did not differ between GBA carriers and noncarriers. GBA mutation carriers performed more poorly than noncarriers on the Mini-Mental State Examination (p = 0.035), and on the memory (p = 0.017) and visuospatial (p = 0.028) domains. The most prominent differences were observed in nonverbal memory performance (p < 0.001). Carriers were more likely to receive scores of 0.5 or higher on the CDR (p < 0.001), and a clinical diagnosis of either MCI or dementia (p = 0.004). Conclusion: GBA mutation status may be an independent risk factor for cognitive impairment in patients with PD.


American Journal of Human Genetics | 2012

Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

Simone Sanna-Cherchi; Krzysztof Kiryluk; Katelyn E. Burgess; Monica Bodria; Matthew Sampson; Dexter Hadley; Shannon N. Nees; Miguel Verbitsky; Brittany J. Perry; Roel Sterken; Vladimir J. Lozanovski; Anna Materna-Kiryluk; Cristina Barlassina; Akshata Kini; Valentina Corbani; Alba Carrea; Danio Somenzi; Corrado Murtas; Nadica Ristoska-Bojkovska; Claudia Izzi; Beatrice Bianco; Marcin Zaniew; Hana Flögelová; Patricia L. Weng; Nilgun Kacak; Stefania Giberti; Maddalena Gigante; Adela Arapović; Kristina Drnasin; Gianluca Caridi

We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10(-11)). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10(-58)). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay.


Mammalian Genome | 2005

Gene expression differences in mice divergently selected for methamphetamine sensitivity

Abraham A. Palmer; Miguel Verbitsky; Rathi Suresh; Helen M. Kamens; Cheryl Reed; Na Li; Sue Burkhart–Kasch; John K. Belknap; T. Conrad Gilliam; Tamara J. Phillips

AbstractIn an effort to identify genes that may be important for drug-abuse liability, we mapped behavioral quantitative trait loci (bQTL) for sensitivity to the locomotor stimulant effect of methamphetamine (MA) using two mouse lines that were selectively bred for high MA-induced activity (HMACT) or low MA-induced activity (LMACT). We then examined gene expression differences between these lines in the nucleus accumbens, using 20 U74Av2 Affymetrix microarrays and quantitative polymerase chain reaction (qPCR). Expression differences were detected for several genes, including Casein Kinase 1 Epsilon (Csnkle), glutamate receptor, ionotropic, AMPA1 (GluR1), GABA B1 receptor (Gabbr1), and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (Darpp-32). We used the www.WebQTL.org database to identify QTL that regulate the expression of the genes identified by the microarrays (expression QTL; eQTL). This approach identified an eQTL for Csnkle on Chromosome 15 (LOD=3.8) that comapped with a bQTL for the MA stimulation phenotype (LOD=4.5), suggesting that a single allele may cause both traits. The chromosomal region containing this QTL has previously been associated with sensitivity to the stimulant effects of cocaine. These results suggest that selection was associated with (and likely caused) altered gene expression that is partially attributable to different frequencies of gene expression polymorphisms. Combining classical genetics with analysis of whole-genome gene expression and bioinformatic resources provides a powerful method for provisionally identifying genes that influence complex traits. The identified genes provide excellent candidates for future hypothesis-driven studies, translational genetic studies, and pharmacological interventions.


JAMA Neurology | 2010

Frequency of Known Mutations in Early-Onset Parkinson Disease: Implication for Genetic Counseling: The Consortium on Risk for Early Onset Parkinson Disease Study

Roy N. Alcalay; Elise Caccappolo; Helen Mejia-Santana; Ming Xin Tang; Llency Rosado; Barbara M. Ross; Miguel Verbitsky; Sergey Kisselev; Elan D. Louis; Cynthia L. Comella; Amy Colcher; Danna Jennings; Martha Nance; Susan Bressman; William K. Scott; Caroline M. Tanner; Susan F. Mickel; Howard Andrews; Cheryl Waters; Stanley Fahn; Lucien J. Cote; Steven J. Frucht; Blair Ford; Michael Rezak; Kevin E. Novak; Joseph H. Friedman; Ronald F. Pfeiffer; Laura Marsh; Bradley Hiner; Andrew Siderowf

OBJECTIVE To assess the frequency and clinical characteristics of carriers of previously identified mutations in 6 genes associated with early-onset Parkinson disease (PD) and provide empirical data that can be used to inform genetic counseling. DESIGN Cross-sectional observational study. SETTING Thirteen movement disorders centers. PATIENTS Nine hundred fifty-three individuals with early-onset PD defined as age at onset (AAO) younger than 51 years. Participants included 77 and 139 individuals of Hispanic and Jewish ancestry, respectively. Intervention Mutations in SNCA, PRKN, PINK1, DJ1, LRRK2, and GBA were assessed. A validated family history interview and the Unified Parkinson Disease Rating Scale were administered. Demographic and phenotypic characteristics were compared among groups defined by mutation status. Main Outcome Measure Mutation carrier frequency stratified by AAO and ethnic background. RESULTS One hundred fifty-eight (16.6%) participants had mutations, including 64 (6.7%) PRKN, 35 (3.6%) LRRK2 G2019S, 64 (6.7%) GBA, and 1 (0.2%) DJ1. Mutation carriers were more frequent in those with an AAO of 30 years or younger compared with those with AAO between 31 and 50 years (40.6% vs 14.6%, P < .001), in individuals who reported Jewish ancestry (32.4% vs 13.7%, P < .001), and in those reporting a first-degree family history of PD (23.9% vs 15.1%, P = .01). Hispanic individuals were more likely to be PRKN carriers than non-Hispanic individuals (15.6% vs 5.9%, P = .003). The GBA L444P mutation was associated with a higher mean Unified Parkinson Disease Rating Scale III score after adjustment for covariates. CONCLUSION Individuals of Jewish or Hispanic ancestry with early-onset PD, those with AAO of 30 years or younger, and those with a history of PD in a first-degree relative may benefit from genetic counseling.


The New England Journal of Medicine | 2013

Mutations in DSTYK and Dominant Urinary Tract Malformations

Simone Sanna-Cherchi; R.V. Sampogna; Natalia Papeta; Katelyn E. Burgess; Shannon N. Nees; Brittany J. Perry; Murim Choi; Monica Bodria; Yuanli Liu; Patricia L. Weng; Vladimir J. Lozanovski; Miguel Verbitsky; F. Lugani; Roel Sterken; Neal Paragas; Gianluca Caridi; Alba Carrea; M. Dagnino; Anna Materna-Kiryluk; G. Santamaria; C. Murtas; Nadica Ristoska-Bojkovska; Claudia Izzi; Nilgun Kacak; Beatrice Bianco; S. Giberti; Maddalena Gigante; G. Piaggio; Loreto Gesualdo; D. Kosuljandic Vukic

BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).


Neuron | 2012

Sonic Hedgehog Maintains Cellular and Neurochemical Homeostasis in the Adult Nigrostriatal Circuit

Luis E. Gonzalez-Reyes; Miguel Verbitsky; Javier Blesa; Vernice Jackson-Lewis; Daniel Paredes; Karsten Tillack; Sudarshan Phani; Edgar R. Kramer; Serge Przedborski; Andreas H. Kottmann

Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non cell-autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinsons disease. Variable Shh signaling results in graded inhibition of muscarinic autoreceptor- and glial cell line-derived neurotrophic factor (GDNF)-expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinsons disease.


JAMA Neurology | 2010

Predictors of parkin mutations in early-onset Parkinson disease: the consortium on risk for early-onset Parkinson disease study.

Karen Marder; Ming X. Tang; Helen Mejia-Santana; Llency Rosado; Elan D. Louis; Cynthia L. Comella; Amy Colcher; Andrew Siderowf; Danna Jennings; Martha Nance; Susan Bressman; William K. Scott; Caroline M. Tanner; Susan F. Mickel; Howard Andrews; Cheryl Waters; Stanley Fahn; Barbara M. Ross; Lucien J. Cote; Steven J. Frucht; Blair Ford; Roy N. Alcalay; Michael Rezak; Kevin E. Novak; Joseph H. Friedman; Ronald F. Pfeiffer; Laura Marsh; Brad Hiner; Gregory D. Neils; Miguel Verbitsky

BACKGROUND Mutations in the parkin gene are the most common genetic cause of early-onset Parkinson disease (PD). Results from a multicenter study of patients with PD systematically sampled by age at onset have not been reported to date. OBJECTIVE To determine risk factors associated with carrying parkin mutations. DESIGN Cross-sectional observational study. SETTING Thirteen movement disorders centers. PARTICIPANTS A total of 956 patients with early-onset PD, defined as age at onset younger than 51 years. MAIN OUTCOME MEASURES Presence of heterozygous, homozygous, or compound heterozygous parkin mutations. RESULTS Using a previously validated interview, 14.7% of patients reported a family history of PD in a first-degree relative. Sixty-four patients (6.7%) had parkin mutations (3.9% heterozygous, 0.6% homozygous, and 2.2% compound heterozygous). Copy number variation was present in 52.3% of mutation carriers (31.6% of heterozygous, 83.3% of homozygous, and 81.0% of compound heterozygous). Deletions in exons 3 and 4 and 255delA were common among Hispanics (specifically Puerto Ricans). Younger age at onset (<40 years) (odds ratio [OR], 5.0; 95% confidence interval [CI], 2.8-8.8; P = .001), Hispanic race/ethnicity (OR compared with white non-Hispanic race/ethnicity, 2.7; 95% CI, 1.3-5.7; P = .009), and family history of PD in a first-degree relative (OR compared with noncarriers, 2.8; 95% CI, 1.5-5.3; P = .002) were associated with carrying any parkin mutation (heterozygous, homozygous, or compound heterozygous). Hispanic race/ethnicity was associated with carrying a heterozygous mutation (OR compared with white non-Hispanic race/ethnicity, 2.8; 95% CI, 1.1-7.2; P = .03) after adjustment for covariates. CONCLUSIONS Age at onset, Hispanic race/ethnicity, and family history of PD are associated with carrying any parkin mutation (heterozygous, homozygous, or compound heterozygous) and heterozygous mutations alone. The increased odds of carrying a parkin mutation among Hispanics warrants further study.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Polyamine pathway contributes to the pathogenesis of Parkinson disease

Nicole M. Lewandowski; Shulin Ju; Miguel Verbitsky; Barbara M. Ross; Melissa L. Geddie; Edward Rockenstein; Anthony Adame; Alim Muhammad; Jean Paul Vonsattel; Dagmar Ringe; Lucien J. Cote; Susan Lindquist; Eliezer Masliah; Gregory A. Petsko; Karen Marder; Lorraine N. Clark; Scott A. Small

The full complement of molecular pathways contributing to the pathogenesis of Parkinson disease (PD) remains unknown. Here we address this issue by taking a broad approach, beginning by using functional MRI to identify brainstem regions differentially affected and resistant to the disease. Relying on these imaging findings, we then profiled gene expression levels from postmortem brainstem regions, identifying a disease-related decrease in the expression of the catabolic polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1). Next, a range of studies were completed to support the pathogenicity of this finding. First, to test for a causal link between polyamines and α-synuclein toxicity, we investigated a yeast model expressing α-synuclein. Polyamines were found to enhance the toxicity of α-synuclein, and an unbiased genome-wide screen for modifiers of α-synuclein toxicity identified Tpo4, a member of a family of proteins responsible for polyamine transport. Second, to test for a causal link between SAT1 activity and PD histopathology, we investigated a mouse model expressing α-synuclein. DENSPM (N1, N11-diethylnorspermine), a polyamine analog that increases SAT1 activity, was found to reduce PD histopathology, whereas Berenil (diminazene aceturate), a pharmacological agent that reduces SAT1 activity, worsened the histopathology. Third, to test for a genetic link, we sequenced the SAT1 gene and a rare but unique disease-associated variant was identified. Taken together, the findings from human patients, yeast, and a mouse model implicate the polyamine pathway in PD pathogenesis.


JAMA Neurology | 2009

Motor Phenotype of LRRK2 G2019S Carriers in Early-Onset Parkinson Disease

Roy N. Alcalay; Helen Mejia-Santana; Ming Xin Tang; Llency Rosado; Miguel Verbitsky; Sergey Kisselev; Barbara M. Ross; Elan D. Louis; Cynthia L. Comella; Amy Colcher; Danna Jennings; Martha Nance; Susan Bressman; William K. Scott; Caroline M. Tanner; Susan F. Mickel; Howard Andrews; Cheryl Waters; Stanley Fahn; Lucien J. Cote; Steven J. Frucht; Blair Ford; Michael Rezak; Kevin E. Novak; Joseph H. Friedman; Ronald F. Pfeiffer; Laura Marsh; Bradley Hiner; Andrew Siderowf; Elise Caccappolo

OBJECTIVE To determine the motor phenotype of LRRK2 G2019S mutation carriers. LRRK2 mutation carriers were previously reported to manifest the tremor dominant motor phenotype, which has been associated with slower motor progression and less cognitive impairment compared with the postural instability and gait difficulty (PIGD) phenotype. DESIGN Cross-sectional observational study. SETTING Thirteen movement disorders centers. PARTICIPANTS Nine hundred twenty-five early-onset Parkinson disease cases defined as age at onset younger than 51 years. MAIN OUTCOME MEASURES LRRK2 mutation status and Parkinson disease motor phenotype: tremor dominant or PIGD. Demographic information, family history of Parkinson disease, and the Unified Parkinsons Disease Rating Scale score were collected on all participants. DNA samples were genotyped for LRRK2 mutations (G2019S, I2020T, R1441C, and Y1699C). Logistic regression was used to examine associations of G2019S mutation status with motor phenotype adjusting for disease duration, Ashkenazi Jewish ancestry, levodopa dose, and family history of Parkinson disease. RESULTS Thirty-four cases (3.7%) (14 previously reported) were G2019S carriers. No other mutations were found. Carriers were more likely to be Ashkenazi Jewish (55.9% vs 11.9%; P < .001) but did not significantly differ in any other demographic or disease characteristics. Carriers had a lower tremor score (P = .03) and were more likely to have a PIGD phenotype (92.3% vs 58.9%; P = .003). The association of the G2019S mutation with PIGD phenotype remained after controlling for disease duration and Ashkenazi Jewish ancestry (odds ratio, 17.7; P < .001). CONCLUSION Early-onset Parkinson disease G2019S LRRK2 carriers are more likely to manifest the PIGD phenotype, which may have implications for disease course.

Collaboration


Dive into the Miguel Verbitsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheryl Waters

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Fahn

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy N. Alcalay

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge