Miha Lukšič
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miha Lukšič.
Journal of Physical Chemistry B | 2014
Miha Lukšič; Christopher J. Fennell; Ken A. Dill
We perform extensive molecular dynamics (MD) simulations between pairs of ions of various diameters (2–5.5 Å in increments of 0.5 Å) and charge (+1 or −1) interacting in explicit water (TIP3P) under ambient conditions. We extract their potentials of mean force (PMFs). We develop an interpolation scheme, called i-PMF, that is capable of capturing the full set of PMFs for arbitrary combinations of ion sizes ranging from 2 to 5.5 Å. The advantage of the interpolation process is computational cost. Whereas it can take 100 h to simulate each PMF by MD, we can compute an equivalently accurate i-PMF in seconds. This process may be useful for rapid and accurate calculation of the strengths of salt bridges and the effects of bridging waters in biomolecular simulations. We also find that our data is consistent with Collins’ “law of matching affinities” of ion solubilities: small–small or large–large ion pairs are poorly soluble in water, whereas small–large are highly soluble.
Physical Chemistry Chemical Physics | 2012
Miha Lukšič; Matjaž Bončina; Vojko Vlachy; Maksym Druchok
Aliphatic x,y-ionenes are polyelectrolytes in which x and y denote the numbers of methylene groups separating quaternary ammonium ions. They represent useful model substances for studying hydrophobic and charge effects in aqueous solutions. We used isothermal titration calorimetry to measure the enthalpies of mixing, ΔH(mix), of 3,3- and 6,6-ionene fluorides and bromides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) at 298 K in water. The signs and magnitudes of the measured enthalpies depend on the hydrophobicity of the ionene and on the nature of the added salt. For example, addition of sodium fluoride to solutions of 3,3- and 6,6-ionene fluorides produced endothermic effects, while addition of sodium bromide to 3,3-ionene bromide resulted in a strong exothermic effect. Interestingly, mixing of 6,6-ionene bromide and NaBr solutions in water gave a small exothermic heat effect. Polyelectrolyte theories, based on continuum-solvent models, predict enthalpies of mixing to be positive (endothermic) for all the solutions examined in this work. The ion-specific effect is more strongly expressed in ionene solutions with higher charge density (3,3-ionene). The most important result of this work is the finding that the enthalpy of mixing of 3,3- (and of 6,6-ionene) fluorides with sodium halides can be expressed as a linear function of the enthalpy of hydration of the halide counterions. The experimental results were complemented with an explicit water molecular dynamics simulation of solutions of oligoions modelling 3,3- and 6,6-ionenes. The computer simulation results for various nitrogen-counterion pair distribution functions were in most cases consistent with the enthalpy measurements.
Journal of Physical Chemistry B | 2012
Miha Lukšič; Tomaz Urbic; Barbara Hribar-Lee; Ken A. Dill
Water is an unusual liquid in its solvation properties. Here, we model the process of transferring a nonpolar solute into water. Our goal was to capture the physical balance between waters hydrogen bonding and van der Waals interactions in a model that is simple enough to be nearly analytical and not heavily computational. We develop a 2-dimensional Mercedes-Benz-like model of water with which we compute the free energy, enthalpy, entropy, and the heat capacity of transfer as a function of temperature, pressure, and solute size. As validation, we find that this model gives the same trends as Monte Carlo simulations of the underlying 2D model and gives qualitative agreement with experiments. The advantages of this model are that it gives simple insights and that computational time is negligible. It may provide a useful starting point for developing more efficient and more realistic 3D models of aqueous solvation.
Chemical Reviews | 2017
Emiliano Brini; Christopher J. Fennell; Marivi Fernandez-Serra; Barbara Hribar-Lee; Miha Lukšič; Ken A. Dill
How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.
American Journal of Case Reports | 2014
Israr A. Sheikh; Miha Lukšič; Richard Ferstenberg; Joan A. Culpepper-Morgan
Patient: Male, 45 Final Diagnosis: Spice/K2 induced liver injury Symptoms: Lethargy • somnolence • fatigue Medication: N-acetylcysteine Clinical Procedure: — Specialty: Gastroenterology Objective: Rare disease Background: Spice/K2 is one of several street names for synthetic marijuana. These hallucinogens are increasingly sold over the internet and in “head” shops. They are usually household herbs that are sprayed with chemicals that become centrally active compounds when burned together and inhaled by smoking. Case Report: We present a case of a 45-year-old male substance abuser who was admitted with evidence of hepatocellular necrosis and worsening liver failure. Tests for acetaminophen were negative, as were tests for alcohol. The patient was empirically treated with N-acetylcysteine. Hepatocellular damage was abated and the patient made a full recovery. Upon regaining consciousness, the patient admitted to smoking Spice/K2. Other toxicities have been reported with synthetic marijuana use, but not liver toxicity. Conclusions: Physicians need to have a high index of suspicion for unknown hepatotoxins in substance abusers. N-acetylcysteine can be given if there is no contraindication.
Molecular Physics | 2014
Matjaž Bončina; Miha Lukšič; Mojca Seručnik; Vojko Vlachy
Isothermal titration calorimetry was used to determine the temperature and concentration dependence of the enthalpy of mixing of 3,3- and 6,6-ionene fluorides, bromides, and iodides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) in water. The magnitudes of the enthalpies, measured in the temperature range from 273 to 318 K, depended on the number of methylene groups on the ionene polyion (hydrophobicity), and on the anion of the added salt (ion-specificity). All enthalpies of mixing of 3,3- and 6,6-ionene fluorides with low molecular weight salts (NaCl, NaBr, and NaI) were negative, which is in contrast to the predictions of standard theories of polyelectrolyte solutions. This fact was interpreted in the light of the ion–water short-range interactions that are not accounted for in those theories. In contrast, the enthalpies of mixing of 3,3- and 6,6-ionene bromides and iodides with NaF were positive, being in accord with theory. Using the calorimetric data, we performed a model thermodynamic analysis of the polyelectrolyte–salt mixing process to obtain changes in the apparent standard Gibbs free energy, enthalpy, entropy, and heat capacity relative to the pure ionene fluorides in water. The results prove that halide ions replace fluoride counterions with a strength increasing in the order chloride < bromide < iodide. The process is enthalpy governed, accompanied by a positive change in the heat capacity.
Journal of Chemical Physics | 2012
Miha Lukšič; Barbara Hribar-Lee; Vojko Vlachy; Orest Pizio
The canonical Monte Carlo computer simulations and integral equation theory were applied to examine the structural and thermodynamic properties of a mixture of ions and a core-softened fluid molecules. The positive and negative ions forming a +1:-1 salt were modeled as charged hard spheres, immersed in the dielectric medium. It was shown previously that the core-softened fluid under study is characterized by a set of structural, thermodynamic, and dynamic anomalies. The principal objective of this work was to elucidate how the presence of ions alters this behavior. The structural properties of the mixtures are discussed in terms of the pair distribution functions; in addition, the pair contribution to the excess entropy was calculated. Thermodynamic properties are investigated by using the dependencies of energy and compressibility factor on density, composition of the mixture, and reduced temperature. The heat capacity was also evaluated. Our principal findings concern the description of structural anomalies in the mixture, the dependence of the temperature of maximum density on the ionic concentration, and establishing the regions delimiting the structural and thermodynamic anomalies of the model mixture.
Molecular Physics | 2012
Miha Lukšič; Barbara Hribar-Lee; Sergio Baleón Tochimani; Orest Pizio
We present a theoretical study of a quenched–annealed system in which an annealed component is the restricted primitive model electrolyte in a mixture with an uncharged hard sphere species, i.e. the solvent primitive model (SPM), whereas a disordered quenched medium is modelled as the restricted primitive model (RPM) electrolyte. The annealed mixture is in thermal and chemical equilibrium with an external reservoir containing the same SPM. The system is studied by using the replica Ornstein–Zernike (ROZ) integral equation theory complemented with the hypernetted chain (HNC) approximation and via the grand canonical Monte Carlo simulations. We are primarily interested in collecting computer simulation data and comparing them with theoretical predictions at room temperature (298.15 K). In terms of physical observables, our focus is in the selectivity effects of adsorption of the mixture described by the adsorption isotherms as well as by the composition isotherms. The influence of the ionic matrix density and of the bulk state of the SPM mixture on adsorption and selectivity are examined in detail. Besides, we analyse the dependence of the internal energy and the constant volume heat capacity on the conditions of adsorption. Finally, we explore briefly the effects of quenching conditions of the RPM matrix on the pair distribution functions of fluid ions in the mixture. In general, the theory is in a very good agreement with computer simulations.
Molecular Physics | 2011
Miha Lukšič; Barbara Hribar-Lee; Orest Pizio
A restricted primitive model electrolyte in a mixture with uncharged hard spheres was studied at room temperature using grand canonical Monte Carlo computer simulation and Ornstein–Zernike integral equation theory in the hypernetted chain approximation (HNC). The mean spherical approximation results are also presented for a few cases. We obtained the pair distribution functions of species of the system, the dependencies of the total fluid density and the ionic fraction on the chemical potentials, the excess internal energy and the heat capacity at constant volume for a wide range of chemical potentials of the species from the simulations and HNC theory. In the majority of cases, good agreement between the theoretical predictions and simulation data is obtained. The composition of the mixture is determined by the chemical potentials of both species. The pair distribution functions have a Debye-like shape at low densities for various values of the ion fraction. By increasing the chemical potential of the uncharged component, weak trends for structuring of the solution are observed with the formation of ion-hard sphere-ion complexes. At high densities, a tendency for in-phase oscillations of ion–ion functions is observed similar to the pure electrolyte in the restricted primitive model. We analysed the chemical potential–density and the chemical potential–ion fraction projections of the equation of state in detail. Also, the heat capacity at constant volume has been calculated for the first time. The model and the results are useful for the development of the theory of inhomogeneous fluid mixtures.
Annual Reports Section "C" (Physical Chemistry) | 2011
Barbara Hribar-Lee; Miha Lukšič; Vojko Vlachy
Disordered porous materials filled with liquid or solution may be considered as partly-quenched, i.e., as systems in which some of the degrees of freedom are quenched and others annealed. In such cases, the statistical-mechanical averages used to calculate the systems thermodynamical properties become double ensemble averages: first over the annealed degrees of freedom and then over all possible values of the quenched variables. In this respect, the quenched-annealed systems differ from regular mixtures. The multi-faceted applications of the partly-quenched systems to a kaleidoscope of technological and biological processes make the understanding of these systems important and of interest. Present contribution reviews recent developments in theory and simulation of partly-quenched systems containing charges. Specifically, two different models of such systems are discussed: (a) the model in which the nanoporous system (matrix subsystem) formed by charged obstacles is electroneutral, and (b) the model, where the subsystem of obstacles has some net charge. The latter model resembles, for example, the situation in ion exchange resins etc. Various theoretical methods are applied to investigate structural and dynamical peculiarities of such systems. One is the replica Ornstein-Zernike theory, especially adapted for charged systems, and the other is the Monte Carlo computer simulation method. These two approaches are well suited to study thermodynamical parameters, such as the mean activity coefficient of the annealed electrolyte or Donnans exclusion parameter. Highly relevant issue of dynamics of ions in partly-quenched systems is also addressed. For this purpose, the Brownian dynamic method is used: the self-diffusion coefficients of ions are calculated for various model parameters and discussed in light of the experimental data. These results, together with the thermodynamical data mentioned above, provide additional evidence that properties of the adsorbed fluid substantially differ from those of its bulk counterpart.