Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihály Kállay is active.

Publication


Featured researches published by Mihály Kállay.


Journal of Chemical Physics | 2001

Higher excitations in coupled-cluster theory

Mihály Kállay; Péter R. Surján

The viability of treating higher excitations in coupled-cluster theory is discussed. An algorithm is presented for solving coupled-cluster (CC) equations which can handle any excitation. Our method combines the formalism of diagrammatic many-body perturbation theory and string-based configuration interaction (CI). CC equations are explicitly put down in terms of antisymmetrized diagrams and a general method is proposed for the factorization of the corresponding algebraic expressions. Contractions between cluster amplitudes and intermediates are evaluated by a string-based algorithm. In contrast to our previous developments [J. Chem. Phys. 113, 1359 (2000)] the operation count of this new method scales roughly as the (2n+2)nd power of the basis set size where n is the highest excitation in the cluster operator. As a by-product we get a completely new CI formalism which is effective for solving both truncated and full CI problems. Generalization for approximate CC models as well as multireference cases is a...


Journal of Chemical Physics | 2004

HEAT: High accuracy extrapolated ab initio thermochemistry

Attila Tajti; Péter G. Szalay; Attila G. Császár; Mihály Kállay; Jürgen Gauss; Edward F. Valeev; Bradley A. Flowers; Juana Vázquez; John F. Stanton

A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and molecules via direct calculation of the corresponding elemental formation reactions are within 1 kJ mol(-1) to experiment in all cases. Given the quite different bonding environments in the product and reactant sides of these reactions, the results strongly indicate that even greater accuracy may be expected in reactions that preserve (either exactly or approximately) the number and types of chemical bonds.


Journal of Chemical Physics | 2004

W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range

A. Daniel Boese; Mikhal Oren; Onur Atasoylu; Jan M. L. Martin; Mihály Kállay; Juergen Gauss

We are proposing a new computational thermochemistry protocol denoted W3 theory, as a successor to W1 and W2 theory proposed earlier [Martin and De Oliveira, J. Chem. Phys. 111, 1843 (1999)]. The new method is both more accurate overall (error statistics for total atomization energies approximately cut in half) and more robust (particularly towards systems exhibiting significant nondynamical correlation) than W2 theory. The cardinal improvement rests in an approximate account for post-CCSD(T) correlation effects. Iterative T3 (connected triple excitations) effects exhibit a basis set convergence behavior similar to the T3 contribution overall. They almost universally decrease molecular binding energies. Their inclusion in isolation yields less accurate results than CCSD(T) nearly across the board: It is only when T4 (connected quadruple excitations) effects are included that superior performance is achieved. T4 effects systematically increase molecular binding energies. Their basis set convergence is quite rapid, and even CCSDTQ/cc-pVDZ scaled by an empirical factor of 1.2532 will yield a quite passable quadruples contribution. The effect of still higher-order excitations was gauged for a subset of molecules (notably the eight-valence electron systems): T5 (connected quintuple excitations) contributions reach 0.3 kcal/mol for the pathologically multireference X 1Sigmag+ state of C2 but are quite small for other systems. A variety of avenues for achieving accuracy beyond that of W3 theory were explored, to no significant avail. W3 thus appears to represent a good compromise between accuracy and computational cost for those seeking a robust method for computational thermochemistry in the kJ/mol accuracy range on small systems.


Journal of Chemical Physics | 2005

Approximate treatment of higher excitations in coupled-cluster theory.

Mihály Kállay; Jürgen Gauss

The possibilities for the approximate treatment of higher excitations in coupled-cluster (CC) theory are discussed. Potential routes for the generalization of corresponding approximations to lower-level CC methods are analyzed for higher excitations. A general string-based algorithm is presented for the evaluation of the special contractions appearing in the equations specific to those approximate CC models. It is demonstrated that several iterative and noniterative approximations to higher excitations can be efficiently implemented with the aid of our algorithm and that the coding effort is mostly reduced to the generation of the corresponding formulas. The performance of the proposed and implemented methods for total energies is assessed with special regard to quadruple and pentuple excitations. The applicability of our approach is illustrated by benchmark calculations for the butadiene molecule. Our results demonstrate that the proposed algorithm enables us to consider the effect of quadruple excitations for molecular systems consisting of up to 10-12 atoms.


Journal of Chemical Physics | 2002

A general state-selective multireference coupled-cluster algorithm

Mihály Kállay; Péter G. Szalay; Péter R. Surján

A state-selective multireference coupled-cluster algorithm is presented which is capable of describing single, double (or higher) excitations from an arbitrary complete model space. One of the active space determinants is chosen as a formal Fermi-vacuum and single, double (or higher) excitations from the other reference functions are considered as higher excitations from this determinant as it has been previously proposed by Oliphant and Adamowicz [J. Chem. Phys. 94, 1229 (1991)]. Coupled-cluster equations are generated in terms of antisymmetrized diagrams and restrictions are imposed on these diagrams to eliminate those cluster amplitudes which carry undesirable number of inactive indices. The corresponding algebraic expressions are factorized and contractions between cluster amplitudes and intermediates are evaluated by our recent string-based algorithm [J. Chem. Phys. 115, 2945 (2001)]. The method can be easily modified to solve multireference configuration interaction problems. Performance of the method is demonstrated by several test calculations on systems which require a multireference description. The problem related to the choice of the Fermi-vacuum has also been investigated.


Journal of Chemical Physics | 2005

Coupled-cluster methods including noniterative corrections for quadruple excitations

Yannick J. Bomble; John F. Stanton; Mihály Kállay; Jürgen Gauss

A new method is presented for treating the effects of quadruple excitations in coupled-cluster theory. In the approach, quadruple excitation contributions are computed from a formula based on a non-Hermitian perturbation theory analogous to that used previously to justify the usual noniterative triples correction used in the coupled cluster singles and doubles method with a perturbative treatment of the triple excitations (CCSD(T)). The method discussed in this paper plays a parallel role in improving energies obtained with the full coupled-cluster singles, doubles, and triples method (CCSDT) by adding a perturbative treatment of the quadruple excitations (CCSDT(Q)). The method is tested for an extensive set of examples, and is shown to provide total energies that compare favorably with those obtained with the full singles, doubles, triples, and quadruples (CCSDTQ) method.


Journal of Chemical Physics | 2004

Calculation of excited-state properties using general coupled-cluster and configuration-interaction models.

Mihály Kállay; Jürgen Gauss

Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark calculations for NH(2) and NH(3). As a first application, the stationary points of the S(1) surface of acetylene are characterized by high-accuracy calculations.


Journal of Chemical Physics | 2006

High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

Yannick J. Bomble; Juana Vázquez; Mihály Kállay; Christine Michauk; Péter G. Szalay; Attila G. Császár; Jürgen Gauss; John F. Stanton

The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51 kJ mol(-1) for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.


Journal of Chemical Physics | 2006

Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory

Miriam Heckert; Mihály Kállay; David P. Tew; Wim Klopper; Juergen Gauss

To reduce remaining basis-set errors in the determination of molecular equilibrium geometries, a basis-set extrapolation (BSE) scheme is suggested for the forces used in geometry optimizations. The proposed BSE scheme is based on separating the Hartree-Fock and electron-correlation contributions and uses expressions obtained by straightforward differentiation of well established extrapolation formulas for energies when using basis sets from Dunnings hierarchy of correlation-consistent basis sets. Comparison with reference data obtained at the R12 coupled-cluster level [CCSD(T)-R12] demonstrates that BSE significantly accelerates the convergence to the basis-set limit, thus leading to improvements comparable to or even better than those obtained by increasing the cardinal number in the used basis set by one. However, BSE alone is insufficient to improve agreement with experiment, even after additional consideration of inner-shell correlation and quadruple-excitation effects (mean error and standard deviation with extrapolation are -0.014 and 0.047 pm in comparison with mean error and standard deviation of -0.002 and 0.036 pm without extrapolation). Improvement is obtained only when other contributions of similar magnitude as the BSE contributions (e.g., pentuple-excitation effects and relativistic effects) are also considered. A rather large discrepancy (of the order of a few tenths of a picometer) is observed for the F(2) molecule indicating an enhanced basis-set requirement for the various contributions in this case.


Journal of Chemical Physics | 2013

An efficient linear-scaling CCSD(T) method based on local natural orbitals.

Zoltán Rolik; Lóránt Szegedy; István Ladjánszki; Bence Ladóczki; Mihály Kállay

An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

Collaboration


Dive into the Mihály Kállay's collaboration.

Top Co-Authors

Avatar

Miklós Kubinyi

Chemical Research Center of the Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

József Csontos

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Dóra Hessz

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Péter G. Szalay

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Péter R. Surján

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

György Keglevich

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Zoltán Rolik

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elemér Fogassy

Budapest University of Technology and Economics

View shared research outputs
Researchain Logo
Decentralizing Knowledge