Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihály Purgel is active.

Publication


Featured researches published by Mihály Purgel.


Inorganic Chemistry | 2010

An NMR and DFT Investigation on the Conformational Properties of Lanthanide(III) 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate Analogues Containing Methylenephosphonate Pendant Arms

Mihály Purgel; Zsolt Baranyai; Andrés de Blas; Teresa Rodríguez-Blas; István Bányai; Carlos Platas-Iglesias; Imre Tóth

The conformational properties of lanthanide(III) complexes with the mono- and biphosphonate analogues of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) are investigated by means of density functional theory (DFT) calculations and NMR spectroscopy. Geometry optimizations performed at the B3LYP/6-31G(d) level and using a 46 + 4f(n) effective core potential for lanthanides provide two energy minima corresponding to the square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) geometries. Our calculations give relative free energies between the SAP and TSAP isomers in fairly good agreement with the experimental values. The SAP isomer presents the highest binding energy of the ligand to the metal ion, which further increases with respect to that of the TSAP isomer across the lanthanide series as the charge density of the metal ion increases. The stabilization of the TSAP isomer upon substitution of the acetate arms of DOTA by methylenephosphonate ones is attributed to the higher steric demand of the phosphonate groups and the higher strain of the ligand in the SAP isomer. A (1)H NMR band-shape analysis performed on the [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes provided the activation parameters for enantiomerization of the TSAP form of the complexes. The TSAP isomerization process was also investigated by using DFT calculations on the [Lu(DOTA)](-) and [Ln(DO2A2P)](3-) (Ln = La and Lu) systems. Our results confirm that enantiomerization requires both rotation of the pendant arms and inversion of the four five-membered chelate rings formed upon coordination of the macrocyclic unit. According to our calculations, the arm rotation pathway in [Lu(DOTA)](-) is a one-step process involving the simultaneous rotation of the four acetate arms, while in the DO2A2P analogue, the arm-rotation process is a multistep path involving the stepwise rotation of each of the four pendant arms. The calculated activation free energies are in reasonably good agreement with the experimental data. A comparison of the experimental (13)C NMR shifts of [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes and those calculated by using the GIAO method confirms that the major isomer observed in solution for these complexes corresponds to the TSAP isomer.


Inorganic Chemistry | 2014

Solution Structures, Stabilities, Kinetics, and Dynamics of DO3A and DO3A−Sulphonamide Complexes

Anett Takács; Roberta Napolitano; Mihály Purgel; Attila Bényei; László Zékány; Ernö Brücher; Imre Tóth; Zsolt Baranyai; Silvio Aime

The Gd(3+)-DO3A-arylsulphonamide (DO3A-SA) complex is a promising pH-sensitive MRI agent. The stability constants of the DO3A-SA and DO3A complexes formed with Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) ions are similar, whereas the logKLnL values of Ln(DO3A-SA) complexes are 2 orders of magnitude higher than those of the Ln(DO3A) complexes. The protonation constant (log KMHL) of the sulphonamide nitrogen in the Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) complexes is very similar to that of the free ligand, whereas the logKLnHL values of the Ln(DO3A-SA) complexes are lower by about 4 logK units, indicating a strong interaction between the Ln(3+) ions and the sulphonamide N atom. The Ln(HDO3A-SA) complexes are formed via triprotonated *Ln(H3DO3A-SA) intermediates which rearrange to the final complex in an OH(-)-assisted deprotonation process. The transmetalation reaction of Gd(HDO3A-SA) with Cu(2+) is very slow (t1/2 = 5.6 × 10(3) h at pH = 7.4), and it mainly occurs through proton-assisted dissociation of the complex. The (1)H and (13)C NMR spectra of the La-, Eu-, Y-, and Lu(DO3A-SA) complexes have been assigned using 2D correlation spectroscopy (COSY, EXSY, HSQC). Two sets of signals are observed for Eu-, Y-, and Lu(DO3A-SA), showing two coordination isomers in solution, that is, square antiprismatic (SAP) and twisted square antiprismatic (TSAP) geometries with ratios of 86-14, 93-7, and 94-6%, respectively. Line shape analysis of the (13)C NMR spectra of La-, Y- , and Lu(DO3A-SA) gives higher rates and lower activation entropy values compared to Ln(DOTA) for the arm rotation, which indicates that the Ln(DO3A-SA) complexes are less rigid due to the larger flexibility of the ethylene group in the sulphonamide pendant arm. The fast isomerization and the lower activation parameters of Ln(DO3A-SA) have been confirmed by theoretical calculations in vacuo and by using the polarizable continuum model. The solid state X-ray structure of Cu(H2DO3A-SA) shows distorted octahedral coordination. The coordination sites of Cu(2+) are occupied by two ring N- and two carboxylate O-atoms in equatorial position. The other two ring N-atoms complete the coordination sphere in axial positions. The solid state structure also indicates that a carboxylate O atom and the sulphonamide nitrogen are protonated and noncoordinated.


Journal of Inorganic Biochemistry | 2009

Glyphosate complexation to aluminium(III). An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations

Mihály Purgel; Zoltán Takács; Caroline M. Jonsson; Lajos Nagy; Ingegärd Andersson; István Bányai; Imre Pápai; Per Persson; Staffan Sjöberg; Imre Tóth

The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated. (1)H and (31)P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the (31)P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions.


RSC Advances | 2015

The kinetics and mechanism of the oxidation of pyruvate ion by hypochlorous acid

Mónika Galajda; Tímea Fodor; Mihály Purgel; István Fábián

The oxidation of pyruvic acid by hypochlorous acid was studied in the pH 1.0–11.0 range. The main path in the redox process is the reaction between the pyruvate ion and HOCl. It was shown that the reaction is second order in both reactants and kHOCl = 2.17 ± 0.04 M−1 s−1 (I = 1.0 M (NaClO4), T = 25.0 °C) with ΔH≠HOCl = 34.6 ± 1.2 kJ mol−1 and ΔS≠HOCl = −120.3 ± 3.6 J mol−1 K−1 for this reaction step. The relatively large negative entropy of activation is consistent with an O atom-transfer mechanism. DFT calculations support this conclusion by predicting a concerted rearrangement of the activated complex which includes the reactants and the solvent water molecule. It was also confirmed that the hydration of pyruvic acid has a significant contribution to the observed kinetic features under acidic conditions. The hydration reaction is a proton catalyzed process and the pseudo-first-order rate constant can be interpreted by considering the protolytic and hydration equilibria of pyruvic acid. The rate constants were determined for the non-catalytic and the proton catalyzed paths: kh0 = 0.24 ± 0.01 s−1 and kh1 = 5.5 ± 0.2 M−1 s−1.


ChemPhysChem | 2014

Solvatochromic Study of Highly Fluorescent Alkylated Isocyanonaphthalenes, Their π‐Stacking, Hydrogen‐Bonding Complexation, and Quenching with Pyridine

Miklós Nagy; Dávid Rácz; László Lázár; Mihály Purgel; Tamás Ditrói; Miklós Zsuga; Sándor Kéki

Mono- and dialkylated derivatives of 1-amino-5-isocyanonaphthalene (ICAN) were studied as new members of a multifunctional, easy-to-prepare fluorophore family, which showed excellent solvatochromic properties. The monoallyl derivative and the starting ICAN exhibited strong fluorescence quenching in the presence of small amounts of pyridine. The formation of a hydrogen-bonded ground-state pyridine complex was detected; however, analysis of quantum chemical calculations suggested the presence of an additional π-stacked pyridine complex. The Stern-Volmer plot of the quenching process exhibited a downward curvature and after reaching a minimum the fluorescence intensity increased back to a significant level at high pyridine concentrations. Significant fluorescence was observed even in pure pyridine. A new mechanism and a simple mathematical equation were derived to explain the downward curvature and the remaining fluorescence by the formation of a fluorescent π-stacked complex.


Inorganic Chemistry | 2011

Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

Mihály Purgel; Mikhail Maliarik; Julius Glaser; Carlos Platas-Iglesias; Ingmar Persson; Imre Tóth

The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system.


Structural Chemistry | 2015

Synthesis and structure of stable water-soluble phosphonium alkanoate zwitterions derived from 1,3,5-triaza-7-phosphaadamantane

Antal Udvardy; Mihály Purgel; Tímea Szarvas; Ferenc Joó; Ágnes Kathó

Abstract1,3,5-triaza-7-phosphaadamantane (PTA) was shown to form phosphonium alkanoate zwitterions with unsaturated dicarboxylic acids in water in the absence of strong acids. Solid-state structures of the phosphonium salt (1) derived from maleic or fumaric acids and that of the zwitterionic product (2) of the reaction of PTA with citraconic and mesaconic acids were determined by single-crystal X-ray diffraction. DFT calculations gave insight into the mechanism of the reaction, including the relative reactivity of the four dicarboxylic acids, and revealed the reasons for the lack of phosphonium salt formation by PTA in strongly acidic aqueous solutions.


New Journal of Chemistry | 2014

Kinetic studies of hydroxyquinone formation from water soluble benzoquinones

Éva Józsa; Mihály Purgel; Marianna Bihari; Péter Pál Fehér; Gábor Sustyák; Balázs Várnagy; Virág Kiss; Eszter Ladó; Katalin Ősz

The kinetics and mechanisms of the redox reactions between hydrogen peroxide and 1,4-benzoquinone, 2-methyl-1,4-benzoquinone, 2,6-dimethyl-1,4-benzoquinone, 2-chloro-1,4-benzoquinone and 2,6-dichloro-1,4-benzoquinone were studied in aqueous media using spectrophotometric monitoring. The formation and decay of a hydroxylated 1,4-benzoquinone was detected. The formation of the intermediate was first order with respect to the parent 1,4-benzoquinone and hydrogen peroxide, whereas inverse first order dependence was revealed with respect to the hydrogen ion. The decomposition reaction had two parallel pathways: one was first order with respect to the intermediate, while the other showed second-order dependence. The values of the rate constant measured for the formation step were successfully correlated with both the redox potentials of the substituted quinone–hydroquinone systems and the pKa values of the hydroxylated quinone derivatives. Therefore, electronic effects govern the reactivity of the quinones in this process. NMR and GC-MS measurements were carried out to identify the products in the system. Quantum mechanical calculations were also carried out in these systems.


Journal of the American Society for Mass Spectrometry | 2016

Can Nonpolar Polyisobutylenes be Measured by Electrospray Ionization Mass Spectrometry? Anion-Attachment Proved to be an Appropriate Method

Lajos Nagy; Tibor Nagy; György Deák; Ákos Kuki; Mihály Purgel; Mijid Narmandakh; Béla Iván; Miklós Zsuga; Sándor Kéki

AbstractPolyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3– and Cl– ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3]– and [PIB + Cl]– adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3]– and [PIB + Cl]– ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl]– ions requires higher collision energy than that of [PIB + NO3]–. In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3– and Cl– as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3]– and [PIB + Cl]– adduct ions. Graphical Abstractᅟ


Inorganic Chemistry | 2018

DFT Study on the Mechanism of Hydrogen Storage Based on the Formate-Bicarbonate Equilibrium Catalyzed by an Ir-NHC Complex: An Elusive Intramolecular C–H Activation

Péter Pál Fehér; Henrietta Horváth; Ferenc Joó; Mihály Purgel

A novel iridium based, water-soluble phosphine-NHC (N-heterocyclic carbene) complex, Na2[Ir( emim)(η4-COD)( mtppts)] was previously developed in our research group. It was shown that it is a very effective catalyst for the reversible storage of hydrogen based on the formate-bicarbonate equilibrium. In this paper, we present a DFT investigation on the noninnocent behavior of the NHC ligand toward C-H activation of the N-ethyl side chain and its possible role in the hydrogen storage mechanism. After preliminary investigations, using both computations and NMR measurements, we conclude that the COD ligand leaves the precatalyst irreversibly and the C-H activation takes place on a monophosphine complex. Two main pathways are considered in which the active Ir(III) complexes are generated differently: One is the cyclometalation path involving the ethyl side chain, the other is the oxidative addition step of a water molecule which has a higher barrier but provide a more stable starting state. We find that though the latter, a catalytic cycle where a hydride is abstracted from formate and gets protonated by solvent molecules gives the lowest calculated energy barrier, +25.8 kcal mol-1. That is, avoiding further redox processes is preferred. There are other pathways involving thermodynamically accessible C-H activated iridacycles but those involve slightly higher overall activation barriers due to the required Ir(I)/Ir(III) transitions. The cycle which involves only iridacycle intermediates offer the lowest energy span (energy difference calculated between only the highest and lowest energy points inside the cycle), however. Together with the experimental results, this implies that C-H activation of the N-ethyl side chain happens off-cycle or the starting solvent addition step of the dominant pathway is blocked kinetically. We also discuss the hydrogen uptake reaction catalyzed by cyclometalated species where the reduction of CO2 is preferred over reversing the first main cycle.

Collaboration


Dive into the Mihály Purgel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imre Tóth

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Ferenc Joó

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Lajos Nagy

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tibor Nagy

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Ákos Kuki

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge