Miho Akimoto
Shimane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miho Akimoto.
Science | 2008
Kaori Ishikawa; Keizo Takenaga; Miho Akimoto; Nobuko Koshikawa; Aya Yamaguchi; Hirotake Imanishi; Kazuto Nakada; Yoshio Honma; Jun-Ichi Hayashi
Mutations in mitochondrial DNA (mtDNA) occur at high frequency in human tumors, but whether these mutations alter tumor cell behavior has been unclear. We used cytoplasmic hybrid (cybrid) technology to replace the endogenous mtDNA in a mouse tumor cell line that was poorly metastatic with mtDNA from a cell line that was highly metastatic, and vice versa. Using assays of metastasis in mice, we found that the recipient tumor cells acquired the metastatic potential of the transferred mtDNA. The mtDNA conferring high metastatic potential contained G13997A and 13885insC mutations in the gene encoding NADH (reduced form of nicotinamide adenine dinucleotide) dehydrogenase subunit 6 (ND6). These mutations produced a deficiency in respiratory complex I activity and were associated with overproduction of reactive oxygen species (ROS). Pretreatment of the highly metastatic tumor cells with ROS scavengers suppressed their metastatic potential in mice. These results indicate that mtDNA mutations can contribute to tumor progression by enhancing the metastatic potential of tumor cells.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Akitsugu Sato; Kazuto Nakada; Miho Akimoto; Kaori Ishikawa; Tomoko Ono; Hiroshi Shitara; Hiromichi Yonekawa; Jun-Ichi Hayashi
The problem of whether recombinant mtDNAs are created in mammalian cells has been controversial for many years. We show convincing evidence for the very rare creation of recombinant mtDNA haplotypes by isolating human somatic hybrid cells and by generating mice carrying two different mtDNA haplotypes. To avoid misinterpretation of PCR-jumping products as recombinants, we used purified mtDNAs for cloning and sequencing. The results showed that only three of 318 clones of mtDNA purified from mouse tissues corresponded to recombinant mtDNA haplotypes, whereas no recombinants were found in human somatic hybrid cells. Such an extremely low frequency of mtDNA recombination does not require any revision of important concepts on human evolution that are based on its absence. Considering the high concentration of reactive oxygen species around the mtDNA and its frequent strand breakage, recombinant clones would correspond to gene conversion products created by repair of nucleotide mismatches.
PLOS ONE | 2015
Miho Akimoto; Mari Iizuka; Rie Kanematsu; Masato Yoshida; Keizo Takenaga
The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.
Anti-cancer Agents in Medicinal Chemistry | 2012
Koshi Kawakami; Miho Hattori; Takatsugu Inoue; Yuriko Maruyama; Junko Ohkanda; Nobuo Kato; Miki Tongu; Takaya Yamada; Miho Akimoto; Keizo Takenaga; Takeshi Sassa; Junji Suzumiy; Yoshio Honma
Malignant cells in solid tumors survive under prolonged hypoxia and can be a source of resistance to current cancer therapies. Tumor hypoxia is also associated with a more malignant phenotype and poor survival in cancer patients. Recent progress in our understanding of the biology of tumor cells under hypoxia has led to increased attention on targeting hypoxia for cancer therapy. We report here that a novel fusicoccin derivative (ISIR-042), but not its parent or related compounds such as fusicoccin A and cotylenin A, is more cytotoxic to hypoxic cells than to normoxic cells. The hypoxia-induced accumulation of hypoxia-inducible factor (HIF)-1α and the phosphorylation of Akt were effectively inhibited by treatment with ISIR-042, suggesting that the preferential cytotoxicity toward hypoxic cells is associated with a reduction of HIF-1α and Akt activation. ISIR-042 inhibited the growth of human pancreatic cancer MIAPaCa-2 cells while sparing normal endothelial cells, and significantly inhibited the growth of MIAPaCa-2 cells as xenografts without apparent adverse effects. Pancreatic cancer cells expressing CD24 and CD44 exhibited characteristics of stem cells. Treatment with gemcitabine increased this stem cell-enriched population, and this effect was significantly inhibited by ISIR-042, suggesting that ISIR- 042 preferentially inhibits stem/progenitors in pancreatic cancer cell lines compared with chemotherapeutic agents. These results suggest that ISIR-042 may be a potential therapeutic agent for hypoxic tumors such as pancreatic cancer.
Nature Communications | 2016
Miho Akimoto; Riruke Maruyama; Hiroyuki Takamaru; Takahiro Ochiya; Keizo Takenaga
Interleukin-33 (IL-33) was recently shown to be involved in the inflammatory tumour microenvironment and the progression of colorectal cancer (CRC). We report here that the expression level of sST2, a soluble form of the IL-33 receptor (ST2L), is inversely associated with the malignant growth of CRC. sST2 is downregulated in high-metastatic cells compared with low-metastatic human and mouse CRC cells. Knockdown of sST2 in low-metastatic cells enhances tumour growth, metastasis and tumour angiogenesis, whereas its overexpression in high-metastatic cells suppresses these processes. Circulating and intratumourally administered sST2-Fc fusion protein reduce tumour growth, metastatic spread and tumour angiogenesis in mice bearing high-metastatic CRC. Mechanistically, sST2 suppresses IL-33-induced angiogenesis, Th1- and Th2-responses, macrophage infiltration and macrophage M2a polarization. In conclusion, we show that sST2 negatively regulates tumour growth and the metastatic spread of CRC through modification of the tumour microenvironment. Thus, the IL-33/ST2L axis may be a potential therapeutic target in CRC.
Leukemia Research | 2011
Tsutomu Takahashi; Koshi Kawakami; Seiji Mishima; Miho Akimoto; Keizo Takenaga; Junji Suzumiya; Yoshio Honma
Cyclopamine, a plant-derived steroidal alkaloid, inhibits the hedgehog (Hh) signaling pathway by antagonizing Smoothened. This drug can induce the differentiation of myeloid leukemia cell lines and acute myeloid leukemia (AML) cells in primary culture. The treated cells were stained with Luxol-fast-blue, which is specific for eosinophilic granules. Ligation of CD44 with some specific monoclonal antibodies can reverse the differentiation of AML cells. Combined treatment with cyclopamine and a monoclonal antibody to ligate CD44 more than additively induced the differentiation of HL-60 cells. These results may provide useful information for the development of a CD44-targeted therapy in AML.
Tumori | 2013
Miho Hattori; Koshi Kawakami; Miho Akimoto; Keizo Takenaga; Junji Suzumiya; Yoshio Honma
AIMS AND BACKGROUND MK615 is produced from Japanese apricot and contains several cyclic triterpenes, such as oleanolic and ursolic acids. MK615 was shown to strongly suppress cutaneous in-transit metastasis in a patient with malignant melanoma. The present investigation was undertaken to clarify the antitumor effects of MK615 in vitro and in vivo. METHODS Several human cancer cell lines were exposed to MK615 for 7 days to examine its antiproliferative effects. The effect of MK615 on in vivo growth of human pancreatic cancer MIAPaCa-2 cells was also examined. RESULTS MK615 inhibited the growth of several human cancer cell lines in a concentration-dependent way. Pancreatic cancer MIAPaCa-2 cells were highly sensitive to the growth-inhibiting effects of MK615. Treatment with MK615 preferentially induced cell death in human cancer cells while sparing normal cells such as human umbilical vein endothelial cells (HUVEC) and mouse bone marrow cells. When MIAPaCa-2 cells were incubated with MK615 in the presence of antioxidant, growth-inhibition was significantly reduced, and MK615 induced the accumulation of reactive oxygen species in cancer cells but not in HUVEC. MK615, in both the presence and absence of gemcitabine, significantly inhibited the growth of human pancreatic cancer cells as xenografts without apparent adverse effects. CONCLUSIONS MK615, a supplement produced from Japanese apricot, may have therapeutic value in treating human cancers through a reactive oxygen species-dependent mechanism.
Cancer Science | 2007
Yoshio Honma; Miho Akimoto
A low concentration of differentiation inducers greatly enhances the in vitro and in vivo antiproliferative effects of interferon (IFN)α in several human cancer cells. Among the differentiation inducers tested, the sensitivity of cancer cells to IFNα was most strongly affected by cotylenin A. Cotylenin A, which is a novel fusicoccane diterpene glycoside with a complex sugar moiety, affected the differentiation of leukemia cells that were freshly isolated from acute myelogenous leukemia patients in primary culture. Tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) and its receptor DR5 were early genes induced by the combination of cotylenin A and IFNα in carcinoma cells. Neutralizing antibody to TRAIL inhibited apoptosis, suggesting that cotylenin A and IFNα cooperatively induced apoptosis through the TRAIL signaling system. Combined treatment preferentially induced apoptosis in human lung cancer cells while sparing normal lung epithelial cells. In an analysis of various cancer cell lines, ovarian cancer cells were highly sensitive to combined treatment with cotylenin A and IFNα in terms of the inhibition of cell growth. This treatment was also effective toward ovarian cancer cells that were refractory to cisplatin, and significantly inhibited the growth of ovarian cancer cells as xenografts without apparent adverse effects. Ovarian cancer cells from patients were also sensitive to the combined treatment in primary cultures. Combined treatment with cotylenin A and IFNα may have therapeutic value in treating human cancers including ovarian cancer. (Cancer Sci 2007; 98: 1643–1651)
Leukemia Research | 2008
Akiyoshi Horie; Miho Akimoto; Hiroto Tsumura; Makoto Makishima; Takeshi Taketani; Seiji Yamaguchi; Yoshio Honma
Lithocholic acid (LCA) acetate induced the differentiation of human leukemia cells. Treatment with a combination of LCA acetate and cotylenin A, an inducer of the differentiation of leukemia cells, was more effective than that with LCA acetate or cotylenin A alone at inducing monocytic differentiation. LCA acetate activated mitogen-activated protein kinase (MAPK) before inducing differentiation. Cotylenin A did not activate MAPK, suggesting that cotylenin A has a different mode of action. The cooperative effects of LCA acetate and cotylenin A on inducing differentiation were, at least partly, due to the enhancement of LCA acetate-induced MAPK activation by cotylenin A.
Cellular Immunology | 2018
Miho Akimoto; Keizo Takenaga
Interleukin-33 (IL-33) has been identified as a natural ligand of ST2L. IL-33 primarily acts as a key regulator of Th2 responses through binding to ST2L, which is antagonized by soluble ST2 (sST2). The IL-33/ST2L axis is involved in various inflammatory pathologies, including ulcerative colitis (UC). Several recent investigations have also suggested that the IL-33/ST2L axis plays a role in colorectal cancer (CRC) progression. In CRC, tumor- and stroma-derived IL-33 may activate ST2L on various cell types in an autocrine and paracrine manner. Although several findings support the hypothesis that the IL-33/ST2L axis positively regulates CRC progression, other reports do not; hence, this hypothesis remains controversial. At any rate, recent studies have provided overwhelming evidence that the IL-33/ST2L axis plays important roles in CRC progression. This review summarizes the role of the IL-33/ST2L axis in the UC and CRC microenvironments.