Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miho Watanabe is active.

Publication


Featured researches published by Miho Watanabe.


The Journal of Neuroscience | 2007

Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation

Hiroaki Wake; Miho Watanabe; Andrew J. Moorhouse; Takashi Kanematsu; Shoko Horibe; Noriyuki Matsukawa; Kiyofumi Asai; Kosei Ojika; Masato Hirata; Junichi Nabekura

The K+ Cl− cotransporter KCC2 plays an important role in chloride homeostasis and in neuronal responses mediated by ionotropic GABA and glycine receptors. The expression levels of KCC2 in neurons determine whether neurotransmitter responses are inhibitory or excitatory. KCC2 expression is decreased in developing neurons, as well as in response to various models of neuronal injury and epilepsy. We investigated whether there is also direct modulation of KCC2 activity by changes in phosphorylation during such neuronal stressors. We examined tyrosine phosphorylation of KCC2 in rat hippocampal neurons under different conditions of in vitro neuronal stress and the functional consequences of changes in tyrosine phosphorylation. Oxidative stress (H2O2) and the induction of seizure activity (BDNF) and hyperexcitability (0 Mg2+) resulted in a rapid dephosphorylation of KCC2 that preceded the decreases in KCC2 protein or mRNA expression. Dephosphorylation of KCC2 is correlated with a reduction of transport activity and a decrease in [Cl−]i, as well as a reduction in KCC2 surface expression. Manipulation of KCC2 tyrosine phosphorylation resulted in altered neuronal viability in response to in vitro oxidative stress. During continued neuronal stress, a second phase of functional KCC2 downregulation occurs that corresponds to decreases in KCC2 protein expression levels. We propose that neuronal stress induces a rapid loss of tyrosine phosphorylation of KCC2 that results in translocation of the protein and functional loss of transport activity. Additional understanding of the mechanisms involved may provide means for manipulating the extent of irreversible injury resulting from different neuronal stressors.


The Journal of Neuroscience | 2011

Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior.

Kei Eto; Hiroaki Wake; Miho Watanabe; Hitoshi Ishibashi; Mami Noda; Yuchio Yanagawa; Junichi Nabekura

Multiple cortical areas are involved in pain processing, including the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC). Although accumulations of evidence suggest that the S1 activity increases under chronic pain conditions, whether plastic change occurs or not within the S1, and whether and how the plastic change contributes to chronic pain behavior, is unknown. Here, we provide the first evidence that intra-regional remodeling within the mouse S1 accelerates chronic pain behavior by modulating neuronal activity in the ACC, one of the important cortical areas for chronic pain. Using two-photon Ca2+ imaging, we found that the spontaneous activity of layer 2/3 neurons in the S1 and then response to sensory and layer 4 stimulations increased under chronic pain conditions. In addition, pharmacological attenuation and facilitation of S1 activity attenuated and facilitated the chronic pain behavior, respectively. Furthermore, electrical response of the ACC to peripheral stimulation successfully correlated with S1 neuronal activity, and inhibition of ACC activity alleviated the mechanical allodynia. The present results will provide development of efficient therapeutic strategies against chronic pain by focusing on the S1 and ACC.


PLOS ONE | 2011

GABA Regulates the Multidirectional Tangential Migration of GABAergic Interneurons in Living Neonatal Mice

Hiroyuki Inada; Miho Watanabe; Taku Uchida; Hitoshi Ishibashi; Hiroaki Wake; Tomomi Nemoto; Yuchio Yanagawa; Atsuo Fukuda; Junichi Nabekura

Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABAA receptors and of the Na+-K+-Cl− cotransporters, and chelating intracellular Ca2+, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABAAR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.


Neuroscience Research | 2008

Sustained depolarizing shift of the GABA reversal potential by glutamate receptor activation in hippocampal neurons

Akihiko Kitamura; Hitoshi Ishibashi; Miho Watanabe; Yusuke Takatsuru; Malcolm S. Brodwick; Junichi Nabekura

The inhibitory action of GABA is a consequence of a relatively hyperpolarized Cl(-) reversal potential (E(Cl)), which results from the activity of K(+)-Cl(-) cotransporter (KCC2). In this study we investigated the effects of glutamate and glutamatergic synaptic activity on E(Cl). In dissociated culture of mature hippocampal neurons, the application of glutamate caused positive E(Cl) shifts with two distinct temporal components. Following a large transient depolarizing state, the sustained depolarizing state (E(Cl)-sustained) lasted more than 30 min. The E(Cl)-sustained disappeared in the absence of external Ca(2+) during glutamate application and was blocked by both AP5 and MK801, but not by nifedipine. The E(Cl)-sustained was also induced by NMDA. The E(Cl)-sustained was blocked by furosemide, a blocker of both KCC2 and NKCC1, but not bumetanide, a blocker of NKCC1. On the other hand, in immature neurons having less expression of KCC2, NMDA failed to induce the sustained depolarizing E(Cl) shift. In organotypic slice cultured neurons, repetitive activation of glutamatergic afferents also generated a sustained depolarizing E(Cl) shift. These results suggest that Ca(2+) influx through NMDA receptors causes the down-regulation of KCC2 and gives rise to long lasting positive E(Cl) shifts, which might contribute to hyperexcitability, LTP, and epileptiform discharges.


Scientific Reports | 2016

Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay.

Hirotomo Saitsu; Miho Watanabe; Tenpei Akita; Chihiro Ohba; Kenji Sugai; Winnie Peitee Ong; Hideaki Shiraishi; Shota Yuasa; Hiroshi Matsumoto; Khoo Teik Beng; Shinji Saitoh; Satoko Miyatake; Mitsuko Nakashima; Noriko Miyake; Mitsuhiro Kato; Atsuo Fukuda; Naomichi Matsumoto

Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K+-Cl− co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl− extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl− level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl− extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.


The Journal of Neuroscience | 2012

Enhanced GABAergic Activity in the Mouse Primary Somatosensory Cortex Is Insufficient to Alleviate Chronic Pain Behavior with Reduced Expression of Neuronal Potassium–Chloride Cotransporter

Kei Eto; Hitoshi Ishibashi; Takeshi Yoshimura; Miho Watanabe; Akiko Miyamoto; Kazuhiro Ikenaka; Andrew J. Moorhouse; Junichi Nabekura

The correct balance between excitation and inhibition is crucial for brain function and disrupted in several pathological conditions. Excitatory neuronal circuits in the primary somatosensory cortex (S1) are modulated by local inhibitory neurons with the balance of this excitatory and inhibitory activity important for function. The activity of excitatory layer 2/3 neurons (L2/3) in the S1 cortex is increased in chronic pain, but it is not known how the local interneurons, nor the balance between excitation and inhibition, may change in chronic pain. Using in vivo two-photon calcium imaging and electrophysiology, we report here that the response of L2/3 local inhibitory neurons to both sensory stimulation and to layer 4 electrical stimulation increases in inflammatory chronic pain. Local application into L2/3 of a GABAA receptor blocker further enhanced the activity of S1 excitatory neurons and reduced pain thresholds, whereas local application of the GABAA receptor modulators (muscimol and diazepam) transiently alleviated the allodynia. This illustrates the importance of the local inhibitory pathways in chronic pain sensation. A reduction in the expression and function of the potassium–chloride cotransporter 2 occurred during chronic pain, which reduces the efficacy of the inhibitory inputs to L2/3 excitatory neurons. In summary, both excitatory and inhibitory neuronal activities in the S1 are enhanced in the chronic pain model, but the increased inhibition is insufficient to completely counterbalance the increased excitation and alleviate the symptoms of chronic pain.


European Journal of Neuroscience | 2006

BDNF occludes GABAB receptor‐mediated inhibition of GABA release in rat hippocampal CA1 pyramidal neurons

Yoshito Mizoguchi; Akihiko Kitamura; Hiroaki Wake; Hitoshi Ishibashi; Miho Watanabe; Takuya Nishimaki; Junichi Nabekura

During the development of the rat hippocampus, both γ‐aminobutyric acid (GABA)B autoreceptors and brain‐derived neurotrophic factor (BDNF) play important roles in the formation of GABAergic synapses as well as in the GABAA receptor‐mediated transmissions. While a number of studies have reported rapid effects of BDNF on GABAA receptor‐mediated responses, the interactions between GABAB autoreceptors and BDNF are less clear. Using conventional whole‐cell patch‐clamp recordings, we demonstrated here that BDNF significantly occludes baclofen‐induced suppression of GABAA receptor‐mediated transmissions in each of the preparations including hippocampal slices prepared from P14 rats, hippocampal CA1 pyramidal neurons isolated from P14 and P21 rats, and cultured hippocampal pyramidal neurons. This effect of BDNF was rapid and reversible, and was mediated via the activation of presynaptic TrkB receptor tyrosine kinases, and subsequent activation of phospholipase C and protein kinase C. On the contrary, in hippocampal CA1 pyramidal neurons isolated from P7 rats, BDNF failed to occlude the GABAB receptor‐mediated inhibition of GABA release. Thus, the ability of BDNF to occlude the GABAB receptor‐mediated inhibition of GABA release develops between P7 and P14. This demonstrates a novel aspect of the effects of BDNF on inhibitory transmissions in rat hippocampus, which may have some functional roles in the induction of developmental plasticity and/or pathophysiology of epilepsy.


Brain Research | 2010

Depolarizing shift in the GABA-induced current reversal potential by lidocaine hydrochloride

Yoshihisa Nakahata; Akiko Miyamoto; Miho Watanabe; Andrew J. Moorhouse; Junichi Nabekura; Hitoshi Ishibashi

Lidocaine hydrochloride (LC-HCl) is widely used as a local anesthetic, while various adverse effects of LC-HCl, such as seizures have also been reported. Lidocaine is reported to inhibit various channels and receptors including GABA(A) receptors. Although the GABA(A) receptor-mediated response depends on Cl(-) equilibrium potential (E(Cl)), little is known about the effect of LC-HCl on E(Cl). In the present study, we investigated the effect of LC-HCl on GABA-induced currents in cultured rat hippocampal neurons with gramicidin-perforated patch-clamp recording which is known to keep the intracellular Cl(-) concentration intact. LC-HCl inhibited outward GABA-induced currents with depolarizing shift of the GABA reversal potential (E(GABA)). The LC-HCl-induced positive E(GABA) shift was not observed with conventional whole-cell patch-clamp method which cannot retain intact intracellular Cl(-) concentration. The LC-HCl action on E(GABA) was inhibited by either furosemide, a blocker of both Na(+)-K(+)-Cl(-) cotransporter (NKCC) and K(+)-Cl(-) cotransporter (KCC), or an increase in extracellular K(+) concentrations. Neither bumetanide, a specific inhibitor of NKCC, nor Na(+)-free external solution had any effect on the LC-HCl-induced E(GABA) shift. QX-314, a membrane impermeable lidocaine derivative, failed to shift E(GABA) to positive potential. Furthermore, LC-HCl caused a depolarizing shift of E(GABA) in cultured GT1-7 cells expressing KCC2 but failed to change E(GABA) in GT1-7 cells without expression of KCC2. These results suggest that the LC-HCl-induced positive E(GABA) shift is due to a blockade of KCC2. Together with the direct LC-HCl action to GABA(A) receptors, the positive E(GABA) shift induced by LC-HCl reduces the GABAergic inhibition in the central nervous system.


bioRxiv | 2018

Conditional upregulation of KCC2 selectively enhances neuronal inhibition during seizures

Chelsea Goulton; Miho Watanabe; Dennis L Cheung; Kristy W. Wang; Tatsuka Oba; Ashor Khoshaba; Daniel Lai; Hiroyuki Inada; Kei Eto; Kayo Nakamura; John M. Power; Trevor M. Lewis; Gary D. Housley; Hiroake Wake; Junichi Nabekura; Andrew J. Moorhouse

Efficacious neuronal inhibition is sustained by the neuronal K+Cl- co-transporter KCC2, and loss of KCC2 function through injury or mutation is associated with altered GABAergic signalling and neuronal seizures. Here we report a transgenic mouse with conditional KCC2 overexpression that results in increased membrane transport function. Increased KCC2 has little impact on behavioural and in vitro assays of neuronal excitability and GABAA receptor responses under resting conditions. In contrast, increased KCC2 imparts resistance to seizure-like neuronal activity in hippocampal slices and prevents the progression of mice into behavioural status epilepticus following multiple kainic acid doses. Our results demonstrate a transgenic mouse to facilitate investigations into the role of KCC2 in brain function, and provide a proof of principle that targeting KCC2 may be an effective way to selectively enhance neuronal inhibition to mitigate against diseases that involve an imbalance between excitation and inhibition.


PLOS ONE | 2018

Prolactin selectively transported to cerebrospinal fluid from blood under hypoxic/ischemic conditions

Naoto Tani; Tomoya Ikeda; Miho Watanabe; Junko Toyomura; Akihiro Ohyama; Takaki Ishikawa

Aim The aim of this study was to determine and to verify the correlation between the amount of prolactin (PRL) levels in the blood and in the cerebrospinal fluid (CSF) by various causes of death as an indicator for acute hypoxia in autopsy cases. It is to confirm the cause of the change in prolactin level in CSF by in vitro system. Materials and methods In autopsy materials, the PRL levels in blood from the right heart ventricle and in the CSF were measured by chemiluminescent enzyme immunoassay, and changes in the percentage of PRL-positive cells in the pituitary gland were examined using an immunohistochemical method. Furthermore, an inverted culture method was used as an in vitro model of the blood-CSF barrier using epithelial cells of the human choroid plexus (HIBCPP cell line) and SDR-P-1D5 or MSH-P3 (PRL-secreting cell line derived from miniature swine hypophysis) under normoxic or hypoxic (5% oxygen) conditions, and as an index of cell activity, we used Vascular Endothelial Growth Factor (VEGF). Results and discussion Serum PRL levels were not significantly different between hypoxia/ischemia cases and other causes of death. However, PRL levels in CSF were three times higher in cases of hypoxia/ischemia than in those of the other causes of death. In the cultured cell under the hypoxia condition, PRL and VEGF showed a high concentration at 10 min. We established a brain-CSF barrier model to clarify the mechanism of PRL transport to CSF from blood, the PRL concentrations from blood to CSF increased under hypoxic conditions from 5 min. These results suggested that PRL moves in CSF through choroidal epithelium from blood within a short time. PRL is hypothesized to protect the hypoxic/ischemic brain, and this may be because of the increased transportation of the choroid plexus epithelial cells.

Collaboration


Dive into the Miho Watanabe's collaboration.

Top Co-Authors

Avatar

Junichi Nabekura

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Hitoshi Ishibashi

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Wake

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Moorhouse

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Akiko Miyamoto

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Inada

Graduate University for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge