Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihwa Choi is active.

Publication


Featured researches published by Mihwa Choi.


Journal of Biological Chemistry | 2007

Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21

Hiroshi Kurosu; Mihwa Choi; Yasushi Ogawa; Addie S. Dickson; Regina Goetz; Anna V. Eliseenkova; Moosa Mohammadi; Kevin P. Rosenblatt; Steven A. Kliewer; Makoto Kuro-o

The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 can signal through FGFR1–3 bound by βKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the βKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of βKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.


Journal of Lipid Research | 2007

Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine

Insook Kim; Sung Hoon Ahn; Takeshi Inagaki; Mihwa Choi; Shinji Ito; Grace L. Guo; Steven A. Kliewer; Frank J. Gonzalez

Bile acid concentrations are controlled by a feedback regulatory pathway whereby activation of the farnesoid X receptor (FXR) represses transcription of both the CYP7A1 gene, encoding the rate-limiting enzyme in the classic bile acid synthesis pathway, and the CYP8B1 gene, required for synthesis of cholic acid. The tissue-specific roles of FXR were examined using liver- and intestine-specific FXR-null models. FXR deficiency in either liver (FxrΔL) or intestine (FxrΔIE) increased bile acid pool size. Treatment with the FXR-selective agonist GW4064 significantly repressed CYP7A1 in FxrΔL mice but not FxrΔIE mice, demonstrating that activation of FXR in intestine but not liver is required for short-term repression of CYP7A1 in liver. This intestinal-specific effect of FXR is likely mediated through induction of the hormone FGF15, which suppresses CYP7A1. In comparison to CYP7A1, FXR-mediated repression of CYP8B1 was more dependent on the presence of FXR in liver and less dependent on its presence in intestine. Consistent with these findings, recombinant FGF15 repressed CYP7A1 mRNA levels without affecting CYP8B1 expression. These data provide evidence that FXR-mediated repression of bile acid synthesis requires the complementary actions of FXR in both liver and intestine and reveal mechanistic differences in feedback repression of CYP7A1 and CYP8B1.


Nature Medicine | 2006

Identification of a hormonal basis for gallbladder filling

Mihwa Choi; Antonio Moschetta; Angie L. Bookout; Li Peng; Michihisa Umetani; Sam R. Holmstrom; Kelly Suino-Powell; H. Eric Xu; James A. Richardson; Robert D. Gerard; David J. Mangelsdorf; Steven A. Kliewer

The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.


Molecular Endocrinology | 2008

Liver Receptor Homolog-1 Regulates Bile Acid Homeostasis but Is Not Essential for Feedback Regulation of Bile Acid Synthesis

Youn Kyoung Lee; Daniel R. Schmidt; Carolyn L. Cummins; Mihwa Choi; Li Peng; Yuan Zhang; Bryan Goodwin; Robert E. Hammer; David J. Mangelsdorf; Steven A. Kliewer

Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synthesis. In vitro studies suggest that LRH-1 may be involved both in stimulating basal CYP7A1 and CYP8B1 transcription and in repressing their expression as part of the nuclear bile acid receptor [farnesoid X receptor (FXR)]-small heterodimer partner signaling cascade, which culminates in small heterodimer partner binding to LRH-1 to repress gene transcription. However, in vivo analysis of LRH-1 actions has been hampered by the embryonic lethality of Lrh-1 knockout mice. To overcome this obstacle, mice were generated in which Lrh-1 was selectively disrupted in either hepatocytes or intestinal epithelium. LRH-1 deficiency in either tissue changed mRNA levels of genes involved in cholesterol and bile acid homeostasis. Surprisingly, LRH-1 deficiency in hepatocytes had no significant effect on basal Cyp7a1 expression or its repression by FXR. Whereas Cyp8b1 repression by FXR was also intact in mice deficient for LRH-1 in hepatocytes, basal CYP8B1 mRNA levels were significantly decreased, and there were corresponding changes in the composition of the bile acid pool. Taken together, these data reveal a broad role for LRH-1 in regulating bile acid homeostasis but demonstrate that LRH-1 is either not involved in the feedback regulation of bile acid synthesis or is compensated for by other factors.


Chemistry & Biology | 2003

Interaction between Vitamin D Receptor and Vitamin D Ligands: Two-Dimensional Alanine Scanning Mutational Analysis

Mihwa Choi; Keiko Yamamoto; Toshimasa Itoh; Makoto Makishima; David J. Mangelsdorf; Dino Moras; Hector F. DeLuca; Sachiko Yamada

We present a new method to investigate the details of interaction between vitamin D nuclear receptor (VDR) and various ligands, namely a two-dimensional alanine scanning mutational analysis. In this method, the transactivation of various ligands is studied in conjunction with a series of alanine scanning mutations of the residues lining the ligand binding pocket (LBP) of VDR, and the complete set of results is profiled in a patch table. We investigated examples from four structurally diverse groups of known VDR ligands: the native vitamin D hormone and two compounds with the same side chain configuration; four 20-epi compounds; three 19-nor compounds; and two nonsecosteroids. The patch table of the results indicates characteristics of each group in terms of its interaction with 18 LBP residues. We demonstrate the validity of this approach by application to docking studies of the two nonsecosteroids.


Molecular Pharmacology | 2009

The Basic Helix-Loop-Helix Proteins Differentiated Embryo Chondrocyte (DEC) 1 and DEC2 Function as Corepressors of Retinoid X Receptors

Yoshitake Cho; Mitsuhide Noshiro; Mihwa Choi; Kentaro Morita; Takeshi Kawamoto; Katsumi Fujimoto; Yukio Kato; Makoto Makishima

The basic helix-loop-helix proteins differentiated embryo chondrocyte 1 (DEC1) and DEC2 are involved in circadian rhythm control. Because the metabolism of dietary nutrients has been linked to circadian regulation, we examined the effect of DEC1 and DEC2 on the function of the metabolite-sensing nuclear receptors, ligand-dependent transcription factors, including retinoid X receptor (RXR) and liver X receptor (LXR). Transfection assays showed that DEC1 and DEC2 repressed ligand-dependent transactivation by RXR. Knockdown of endogenous DEC1 and DEC2 expression with small interfering RNAs augmented ligand-dependent RXRα transactivation. DEC1 and DEC2 interacted directly with RXRα, and ligand addition enhanced their association. DEC1 and DEC2 modified interaction of RXRα with cofactor proteins. Transfection assays using DEC1 and DEC2 mutants revealed that the C-terminal region of DEC2 is required for repression and that an LXXLL motif in DEC1 and DEC2 is necessary for RXRα repression. DEC1 and DEC2 repressed the induction of LXR target genes, associated with the promoter of an LXR target gene, and dissociated from the promoter with ligand treatment. Knockdown of endogenous DEC1 and DEC2 enhanced the LXR target gene expression in hepatocytes. Expression of Dec1, Dec2, and Srebp-1c showed a circadian rhythm in the liver of mice, whereas that of Lxrα, Lxrβ, and Rxrα was not rhythmic. DEC1 and DEC2 also repressed the transactivation of other RXR heterodimers, such as farnesoid X receptor, vitamin D receptor, and retinoic acid receptor. Thus, the repressor function of DEC1 and DEC2 may be extended to other RXR heterodimer nuclear receptors.


Bioorganic & Medicinal Chemistry | 2001

Ligand recognition by the vitamin D receptor.

Mihwa Choi; Keiko Yamamoto; Hiroyuki Masuno; Kinichi Nakashima; Tetsuya Taga; Sachiko Yamada

Three-dimensional structure of the ligand binding domain (LBD) of the vitamin D receptor (VDR) docked with the natural ligand 1 alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] has been mostly solved by the X-ray crystallographic analysis of the deletion mutant (VDR-LBD Delta 165-215). The important focus, from now on, is how the VDR recognizes and interacts with potent synthetic ligands. We now report the docking models of the VDR with three functionally and structurally interesting ligands, 22-oxa-1,25-(OH)(2)D(3) (OCT), 20-epi-1,25-(OH)(2)D(3) and 20-epi-22-oxa-24,26,27-trihomo-1,25-(OH)(2)D(3). In parallel with the computational docking studies, we prepared twelve one-point mutants of amino acid residues lining the ligand binding pocket of the VDR and examined their transactivation potency induced by 1,25-(OH)(2)D(3) and these synthetic ligands. The results indicate that L233, R274, W286, H397 and Y401 are essential for holding the all ligands tested, S278 and Q400 are not important at all, and the importance of S237, V234, S275, C288 and H305 is variable depending on the side-chain structure of the ligands. Based on these studies, we suggested key structural factors to bestow the selective action on OCT and the augmented activities on 20-epi-ligands. Furthermore, the docking models coincided well with our proposed active space-region theory of vitamin D based on the conformational analyses of ligands.


Expert Opinion on Therapeutic Patents | 2009

Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands

Mihwa Choi; Makoto Makishima

Background: The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), plays an important role in calcium homeostasis, cell differentiation, cell proliferation and immunity. A more complete understanding of the several physiological and pharmacological properties of 1,25(OH)2D3 indicates that the vitamin D receptor (VDR) is a promising drug target in the treatment of cancers, autoimmune diseases, infections and cardiovascular disease as well as bone and mineral disorders. The calcemic effect of 1,25(OH)2D3 and its derivatives has limited their clinical application. As a result, the development of non-calcemic VDR ligands is required to realize the potential of VDR-targeting therapy. Objective: In this review, we discuss the in vitro and in vivo pharmacological actions, including VDR interaction, regulation of cofactor recruitment, pharmacokinetics and cell type or tissue-selective action of VDR ligands with less-calcemic activity. Conclusion: Pharmacokinetic parameters and selective tissue accumulation are related to the therapeutic benefit of non-hypercalcemic vitamin D derivatives. Induction of distinct VDR conformations and cofactor recruitment may be associated with selective actions of non-secosteroidal VDR ligands. Derivatives of lithocholic acid, a newly identified endogenous VDR ligand, are less-calcemic VDR ligands.


Toxicology | 2011

Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice

Jun Ozeki; Shigeyuki Uno; Michitaka Ogura; Mihwa Choi; Tetsuyo Maeda; Sakurai K; Sadanori Matsuo; Sadao Amano; Daniel W. Nebert; Makoto Makishima

The environmental pollutant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) is known to cause a wide variety of toxic effects, including hepatotoxicity, by way of the aryl hydrocarbon receptor (AHR). Although inducible expression of cytochrome P450 (CYP) 1A1 and CYP1A2 is associated with liver injury caused by high-dose TCDD, the specific role of the AHR-CYP1 cascade in hepatotoxicity remains unclear. We investigated the effects of AHR activation under conditions of cholestasis. We administered oral TCDD to mice at a dose that can effectively induce Cyp1 gene expression without overt liver toxicity and then ligated their bile ducts. TCDD pretreatment enhanced bile duct ligation (BDL)-induced increases in liver and plasma bile acids, bilirubin, and aminotransferases. Histology of TCDD-pretreated BDL mice revealed massive hepatic necrosis without any increase in number of apoptotic cells. Whereas induction of AHR-target genes by TCDD was observed similarly in sham-operated as well as in BDL mice, TCDD pretreatment of BDL mice altered the expression of hepatic genes involved in bile acid synthesis and transport. Increased plasma proinflammatory cytokines, tumor necrosis factor and interleukin-1β, in BDL mice were further elevated by TCDD pretreatment. Liver injury by TCDD plus BDL, such as increased plasma bile acids, bilirubin and aminotransferases, liver necrosis, and increased tumor necrosis factor production, was exaggerated in Cyp1a1/1a2(-/-) double knockout mice. These findings indicate that TCDD aggravates cholestatic liver damage and that the presence of CYP1A1 and CYP1A2 plays a protective role in liver damage caused by TCDD and BDL.


Steroids | 2001

Three-dimensional structure-function relationship of vitamin D and vitamin D receptor model.

Sachiko Yamada; Keiko Yamamoto; Hiroyuki Masuno; Mihwa Choi

On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A >> G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G >> EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand.

Collaboration


Dive into the Mihwa Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Yamamoto

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Masuno

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Beutler

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge