Miia R. Mäkelä
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miia R. Mäkelä.
Journal of Basic Microbiology | 2010
Taina Lundell; Miia R. Mäkelä; Kristiina Hildén
Filamentous fungi owe powerful abilities for decomposition of the extensive plant material, lignocellulose, and thereby are indispensable for the Earths carbon cycle, generation of soil humic matter and formation of soil fine structure. The filamentous wood‐decaying fungi belong to the phyla Basidiomycota and Ascomycota, and are unique organisms specified to degradation of the xylem cell wall components (cellulose, hemicelluloses, lignins and extractives). The basidiomycetous wood‐decaying fungi form brackets, caps or resupinaceous (corticioid) fruiting bodies when growing on wood for dissemination of their sexual basidiospores. In particular, the ability to decompose the aromatic lignin polymers in wood is mostly restricted to the white rot basidiomycetes. The white‐rot decay of wood is possible due to secretion of organic acids, secondary metabolites, and oxidoreductive metalloenzymes, heme peroxidases and laccases, encoded by divergent gene families in these fungi. The brown rot basidiomycetes obviously depend more on a non‐enzymatic strategy for decomposition of wood cellulose and modification of lignin. This review gives a current ecological, genomic, and protein functional and phylogenetic perspective of the wood and lignocellulose‐decaying basidiomycetous fungi. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Enzyme and Microbial Technology | 2002
Miia R. Mäkelä; Sari Galkin; Annele Hatakka; Taina Lundell
Intracellular oxalate decarboxylase (ODC, EC 4.1.1.2) activity was screened in the mycelium of 12 white rot fungi. ODC activity was detected in the mycelial extracts of Dichomitus squalens, Phanerochaete sanguinea, Trametes ochracea, and Trametes versicolor (strain R/7) after addition of 5-mM oxalic acid to the liquid culture medium. In D. squalens, intracellular ODC activity increased six-fold with addition of oxalic acid. Production of extracellular organic acids by the four ODC-positive fungi was followed in liquid cultures and in solid state cultures of spruce wood chips by using HPLC and capillary zone electrophoresis (CZE). The four ODC-positive fungi secreted oxalic acid both in liquid and solid state cultures showing different production patterns until the end of growth (31 days). Upon cultivation on solid spruce wood chips, manganese peroxidase (MnP) activity peaked simultaneously in these fungi with the accumulation of extracellular oxalic acid. In addition to oxalic acid, glyoxylic and formic acids were detected in the cultures of D. squalens.
Microbiology and Molecular Biology Reviews | 2014
Johanna Rytioja; Kristiina Hildén; Jennifer Yuzon; Annele Hatakka; Ronald P. de Vries; Miia R. Mäkelä
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Advances in Applied Microbiology | 2014
Anikó Várnai; Miia R. Mäkelä; Demi T. Djajadi; Jenni Rahikainen; Annele Hatakka; Liisa Viikari
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Applied Microbiology and Biotechnology | 2010
Miia R. Mäkelä; Kristiina Hildén; Taina Lundell
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO2. This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.
Biotechnology for Biofuels | 2015
Isabelle Benoit; Helena Culleton; Miaomiao Zhou; Marcos DiFalco; Guillermo Aguilar-Osorio; Evy Battaglia; Ourdia Bouzid; Carlo P J M Brouwer; Hala B O El-Bushari; Pedro M. Coutinho; Birgit S. Gruben; Kristiina Hildén; Jos Houbraken; Luis Alexis Jiménez Barboza; Anthony Levasseur; Eline Majoor; Miia R. Mäkelä; Hari Mander Narang; Blanca Trejo-Aguilar; Joost van den Brink; Patricia A. vanKuyk; Ad Wiebenga; Vincent A. McKie; Barry V. McCleary; Adrian Tsang; Bernard Henrissat; Ronald P. de Vries
BackgroundPlant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails.ResultsIt is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition.ConclusionsThese data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.
Advances in Botanical Research | 2014
Taina Lundell; Miia R. Mäkelä; Ronald P. de Vries; Kristiina Hildén
Abstract Saprobic ( saprotrophic and saprophytic ) wood-decay fungi are in majority species belonging to the fungal phylum Basidiomycota, whereas saprobic plant litter-decomposing fungi are species of both the Basidiomycota and the second Dikarya phylum Ascomycota. Wood-colonizing white rot and brown rot fungi are principally polypore, gilled pleurotoid, or corticioid Basidiomycota species of the class Agaricomycetes, which also includes forest and grassland soil-inhabiting and litter-decomposing mushroom species. In this chapter, examples of lignocellulose degradation patterns are presented in the current view of genome sequencing and comparative genomics of fungal wood-decay enzymes. Specific attention is given to the model white rot fungus, lignin-degrading species Phanerochaete chrysosporium and its wood decay-related gene expression (transcriptomics) on lignocellulose substrates. Types of fungal decay patterns on wood and plant lignocellulose are discussed in the view of fungal lifestyle strategies. Potentiality of the plant biomass-decomposing Basidiomycota species, their secreted enzymes and respective lignocellulose-attacking genes is evaluated in regard to development of biotechnological and industrial applications.
Fungal Biology | 2013
Miia R. Mäkelä; Taina Lundell; Annele Hatakka; Kristiina Hildén
Production of the oxidoreductive lignin-modifying enzymes - lignin and manganese peroxidases (MnPs), and laccase - of the white-rot basidiomycete Phlebia radiata was investigated in semi-solid cultures supplemented with milled grey alder or Norway spruce and charcoal. Concentrations of nutrient nitrogen and Cu-supplement varied also in the cultures. According to extracellular activities, production of both lignin peroxidase (LiP) and MnP was significantly promoted with wood as carbon source, with milled alder (MA) and low nitrogen (LN) resulting with the maximal LiP activities (550 nkat l(-1)) and noticeable levels of MnP (3 μkat l(-1)). Activities of LiP and MnP were also elevated on high nitrogen (HN) complex medium when supplemented with spruce and charcoal. Maximal laccase activities (22 and 29 μkat l(-1)) were obtained in extra high nitrogen (eHN) containing defined and complex media supplemented with 1.5 mM Cu(2+). However, the nitrogen source, either peptone or ammonium nitrate and asparagine, caused no stimulation on laccase production without Cu-supplement. This is also the first report to demonstrate a new, on high Cu(2+) amended medium produced extracellular laccase of P. radiata with pI value of 4.9, thereby complementing our previous findings on gene expression, and cloning of a second laccase of this fungus.
Fungal Genetics and Biology | 2014
Miia R. Mäkelä; Nicole M. Donofrio; Ronald P. de Vries
Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.
Microbiology | 2009
Miia R. Mäkelä; Kristiina Hildén; Annele Hatakka; Taina Lundell
Oxalate decarboxylase (ODC) catalyses the conversion of oxalic acid to formic acid and CO(2) in bacteria and fungi. In wood-decaying fungi the enzyme has been linked to the regulation of intra- and extracellular quantities of oxalic acid, which is one of the key components in biological decomposition of wood. ODC enzymes are biotechnologically interesting for their potential in diagnostics, agriculture and environmental applications, e.g. removal of oxalic acid from industrial wastewaters. We identified a novel ODC in mycelial extracts of two wild-type isolates of Dichomitus squalens, and cloned the corresponding Ds-odc gene. The primary structure of the Ds-ODC protein contains two conserved Mn-binding cupin motifs, but at the N-terminus, a unique, approximately 60 aa alanine-serine-rich region is found. Real-time quantitative RT-PCR analysis confirmed gene expression when the fungus was cultivated on wood and in liquid medium. However, addition of oxalic acid in liquid cultures caused no increase in transcript amounts, thereby indicating a constitutive rather than inducible expression of Ds-odc. The detected stimulation of ODC activity by oxalic acid is more likely due to enzyme activation than to transcriptional upregulation of the Ds-odc gene. Our results support involvement of ODC in primary rather than secondary metabolism in fungi.