Mijo Simunovic
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mijo Simunovic.
Nature | 2015
Henri-François Renard; Mijo Simunovic; Joël Lemière; Emmanuel Boucrot; Maria Daniela Garcia-Castillo; Senthil Arumugam; Valérie Chambon; Christophe Lamaze; Christian Wunder; Anne K. Kenworthy; Anne A. Schmidt; Harvey T. McMahon; Cécile Sykes; Patricia Bassereau; Ludger Johannes
During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mijo Simunovic; Anand Srivastava; Gregory A. Voth
Significance The remodeling of lipid membranes accompanies many cellular processes, such as the formation of organelles, division, trafficking, and signaling. Although many proteins have been implicated to play roles in these processes, their vast complexity precluded the profound understanding of how they occur at the molecular level. The most notable membrane remodelers are proteins containing one of several types of Bin/amphiphysin/Rvs (BAR) domains. They adhere and insert into the membrane to sculpt it into different shapes. Our work demonstrates that N-BAR proteins arrange into string-like aggregates and meshes that generate the initial curvature on the membrane. Our observation on the self-assembly of proteins elucidates the way these proteins may interact rapidly to participate in complex cellular machineries. Adhesion and insertion of curvature-mediating proteins can induce dramatic structural changes in cell membranes, allowing them to participate in several key cellular tasks. The way proteins interact to generate curvature remains largely unclear, especially at early stages of membrane remodeling. Using a coarse-grained model of Bin/amphiphysin/Rvs domain with an N-terminal helix (N-BAR) interacting with flat membranes and vesicles, we demonstrate that at low protein surface densities, binding of N-BAR domain proteins to the membrane is followed by a linear aggregation and the formation of meshes on the surface. In this process, the proteins assemble at the base of emerging membrane buds. Our work shows that beyond a more straightforward scaffolding mechanism at high bound densities, the interplay of anisotropic interactions and the local stress imposed by the N-BAR proteins results in deep invaginations and endocytic vesicular bud-like deformations, an order of magnitude larger than the size of the individual protein. Our results imply that by virtue of this mechanism, cell membranes may achieve rapid local increases in protein concentration.
Trends in Cell Biology | 2015
Mijo Simunovic; Gregory A. Voth; Andrew Callan-Jones; Patricia Bassereau
Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response, or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters.
Nature Communications | 2015
Mijo Simunovic; Gregory A. Voth
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell.
Cell | 2017
Mijo Simunovic; Jean-Baptiste Manneville; Henri-François Renard; Emma Evergren; Krishnan Raghunathan; Dhiraj Bhatia; Anne K. Kenworthy; Gregory A. Voth; Jacques Prost; Harvey T. McMahon; Ludger Johannes; Patricia Bassereau; Andrew Callan-Jones
Summary Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.
Biophysical Journal | 2013
Mijo Simunovic; Carsten Mim; Thomas C. Marlovits; Guenter P. Resch; Vinzenz M. Unger; Gregory A. Voth
Key cellular processes are frequently accompanied by protein-facilitated shape changes in the plasma membrane. N-BAR-domain protein modules generate curvature by means of complex interactions with the membrane surface. The way they assemble and the mechanism by which they operate are largely dependent on their binding density. Although the mechanism at lower densities has recently begun to emerge, how membrane scaffolds form at high densities remains unclear. By combining electron microscopy and multiscale simulations, we show that N-BAR proteins at high densities can transform a lipid vesicle into a 3D tubular network. We show that this process is a consequence of excess adhesive energy combined with the local stiffening of the membrane, which occurs in a narrow range of mechanical properties of both the membrane and the protein. We show that lipid diffusion is significantly reduced by protein binding at this density regime and even more in areas of high Gaussian curvature, indicating a potential effect on molecular transport in cells. Finally, we reveal that the breaking of the bilayer topology is accompanied by the nematic arrangement of the protein on the surface, a structural motif that likely drives the formation of reticular structures in living cells.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Mijo Simunovic; Emma Evergren; Ivan Golushko; Coline Prévost; Henri-François Renard; Ludger Johannes; Harvey T. McMahon; Vladimir Lorman; Gregory A. Voth; Patricia Bassereau
Significance Lipid membranes are dynamic assemblies, changing shape on nano- to micron-sized scales. Some proteins can sculpt membranes by organizing into a molecular scaffold, dictating the membrane’s shape and properties. We combine microscopy, mathematical modeling, and simulations to explore how Bin/Amphiphysin/Rvs proteins assemble to form scaffolds on nanotubes. We show that the way protein locally deforms the membrane affects where it will nucleate before making a scaffold. In this process, the protein’s amphipathic helices—which shallowly insert into the membrane—seem dispensable. Surprisingly, the scaffold forms at low protein density on the nanotube. We simulate a structure of protein scaffolds at molecular resolution, shedding light on how these proteins may sculpt the membrane to facilitate important dynamic events in cells. Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein–membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.
Biological Chemistry | 2014
Mijo Simunovic; Patricia Bassereau
Abstract Lipid membranes are highly dynamic. Over several decades, physicists and biologists have uncovered a number of ways they can change the shape of membranes or alter their phase behavior. In cells, the intricate action of membrane proteins drives these processes. Considering the highly complex ways proteins interact with biological membranes, molecular mechanisms of membrane remodeling still remain unclear. When studying membrane remodeling phenomena, researchers often observe different results, leading them to disparate conclusions on the physiological course of such processes. Here we discuss how combining research methodologies and various experimental conditions contributes to the understanding of the entire phase space of membrane-protein interactions. Using the example of clathrin-mediated endocytosis we try to distinguish the question ‘how can proteins remodel the membrane?’ from ‘how do proteins remodel the membrane in the cell?’ In particular, we consider how altering physical parameters may affect the way membrane is remodeled. Uncovering the full range of physical conditions under which membrane phenomena take place is key in understanding the way cells take advantage of membrane properties in carrying out their vital tasks.
Biophysical Journal | 2012
Mijo Simunovic; Gregory A. Voth
Hsp90, the most abundant cellular protein, has been implicated in numerous physiological and pathological processes. It controls protein folding and prevents aggregation, but it also plays a role in cancer and neurological disorders, making it an attractive drug target. Experimental efforts have demonstrated its remarkable structural flexibility and conformational complexity, which enable it to accommodate a variety of clients, but have not been able to provide a detailed molecular description of the conformational transitions. In our molecular dynamics simulations, Hsp90 underwent dramatic structural rearrangements into energetically favorable stretched and compact states. The transitions were guided by key electrostatic interactions between specific residues of opposite subunits. Nucleotide-bound structures showed the same conformational flexibility, although ADP and ATP seemed to potentiate these interactions by stabilizing two different closed conformations. Our observations may explain the difference in dynamic behavior observed among Hsp90 homologs, and the atomic resolution of the conformational transitions helps elucidate the complex chaperone machinery.
Journal of Structural Biology | 2016
Aram Davtyan; Mijo Simunovic; Gregory A. Voth
Protein-facilitated shape and topology changes of cell membranes are crucial for many biological processes, such as cell division, protein trafficking, and cell signaling. However, the inherently multiscale nature of membrane remodeling presents a considerable challenge for understanding the mechanisms and physics that drive this process. To address this problem, a multiscale approach that makes use of a diverse set of computational and experimental techniques is required. The atomistic simulations provide high-resolution information on protein-membrane interactions. Experimental techniques, like electron microscopy, on the other hand, resolve high-order organization of proteins on the membrane. Coarse-grained (CG) and mesoscale computational techniques provide the intermediate link between the two scales and can give new insights into the underlying mechanisms. In this Review, we present the recent advances in multiscale computational approaches established in our group. We discuss various CG and mesoscale approaches in studying the protein-mediated large-scale membrane remodeling.